Generates, filters, parses, and cleans data regarding the financial disclosures of judges in the American Judicial System

Overview

This repository contains code that gets data regarding financial disclosures from the Court Listener API

  • main.py: contains driver code that interacts with all the other files. Only file that should be run. When run it will grab all the data and populate output.csv with it
  • auth_token.py: Reads API authentication token.
  • AUTH_TOKEN.txt: Contains API authentication token. Obtain yours from here and paste it into this file
  • fields.py: contains the code that grabs all the fields from every disclosure
  • lookups.py: contains some extra lookup tables (aside form the ones embedded in fields.py) for the values returned from the API
  • utils.py: contains some utility functions
  • requirements.txt: contains the list of dependencies used. Install them by running pip install -r requirements.txt
  • README.txt: readme in txt format

Overview

Every year judges file a financial disclosure form as mandated by law. Courtlistener parses these forms which are PDFs into their database. Here is an example of one of the unederlying forms that will help me explain what every row in our data is: https://storage.courtlistener.com/us/federal/judicial/financial-disclosures/9529/patricia-a-sullivan-disclosure.2019.pdf Disclosures are seperated into certain categories, such as positions, or investments. Each individual listing under a certain type of disclosure, is a row in our data. So if you look at that PDF, Member and Officer at Board of Directors of Roger Williams University School of Law, would be the basis for one row. If you scroll down to investments, MFS Investment Management (Educational Funds) (H), would also be the basis for one row. For that row, the fields listed below under Disclosure Fields -> Investments will all be filled out (unless they are not present in the courtlistner database). The Common Fields and Person Fields will also be filled out. Person fields are fields unique to the judge, and common fields unique to the report. So for the two example rows, the common fields and person fields would remain constant (as the judge and report are the same), but the disclosure fields will be different. For the first one, the fields under Disclosure Fields -> Positions will be filled out, with the rest of the disclosure fields empty, and for the second one the fields under Disclosure Fields -> Investments would be filled out.

=============
Common Fields
=============



sha1: SHA1 hash of the generated PDF
is_amended: Is disclosure amended?
Disclosure PDF: PDF of the original filed disclosure
Year Disclosed: Date of judicial agreement.
report_type: Financial Disclosure report type
addendum_redacted: Is the addendum partially or completely redacted?
Disclosure Type: Type of the disclosure, (investments, debts, etc)

=============
Disclosure Fields
=============


Note: Depending on the Disclosure Type field above, the corresponding fields will be filled in for the row


agreements:
        date_raw: Date of judicial agreement.
        parties_and_terms: Parties and terms of agreement (ex. Board Member NY Ballet)
        redacted: Does the agreement row contain redaction(s)?
        financial_disclosure: The financial disclosure associated with this agreement.
        id: ID of the record.
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

debts:
        creditor_name: Liability/Debt creditor
        description: Description of the debt
        value_code: Form code for the value of the judicial debt, substituted with the numerical values of the range.
        value_code_max: The maximum value of the value_code.
        redacted: Does the debt row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

gifts:
        source: Source of the judicial gift. (ex. Alta Ski Area).
        description: Description of the gift (ex. Season Pass).
        value: Value of the judicial gift, (ex. $1,199.00)
        redacted: Does the gift row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

investments:
        page_number: The page number the investment is listed on.  This is used to generate links directly to the PDF page.
        description: Name of investment (ex. APPL common stock).
        redacted: Does the investment row contains redaction(s)?
        income_during_reporting_period_code: Increase in investment value - as a form code. Substituted with the numerical values of the range.
        income_during_reporting_period_code_max: Maximum value of income_during_reporting_period_code.
        income_during_reporting_period_type: Type of investment (ex. Rent, Dividend). Typically standardized but not universally.
        gross_value_code: Investment total value code at end of reporting period as code (ex. J (1-15,000)). Substituted with the numerical values of the range.
        gross_value_code_max: Maximum value of the gross_value_code.
        gross_value_method: Investment valuation method code (ex. Q = Appraisal)
        transaction_during_reporting_period: Transaction of investment during reporting period (ex. Buy, Sold)
        transaction_date_raw: Date of the transaction, if any (D2)
        transaction_date: Date of the transaction, if any (D2)
        transaction_value_code: Transaction value amount, as form code (ex. J (1-15,000)). Substituted with the numerical values of the range.
        transaction_value_code_max: Maximum value of transaction_value_code.
        transaction_gain_code: Gain from investment transaction if any (ex. A (1-1000)). Substituted with the numerical values of the range.
        transaction_gain_code_max: Maximum value of transaction_gain_code.
        transaction_partner: Identity of the transaction partner
        has_inferred_values: If the investment name was inferred during extraction. This is common because transactions usually list the first purchase of a stock and leave the name value blank for subsequent purchases or sales.
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

non_investment_incomes:
        date_raw: Date of non-investment income (ex. 2011).
        source_type: Source and type of non-investment income for the judge (ex. Teaching a class at U. Miami).
        income_amount: Amount earned by judge, often a number, but sometimes with explanatory text (e.g. 'Income at firm: $xyz').
        redacted: Does the non-investment income row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

positions:
        non judiciary position: Position title (ex. Trustee).
        organization_name: Name of organization or entity (ex. Trust #1).
        redacted: Does the position row contain redaction(s)?
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown

reimbursements:
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown
        source: Source of the reimbursement (ex. FSU Law School).
        date_raw: Dates as a text string for the date of reimbursements. This is often conference dates (ex. June 2-6, 2011). 
        location: Location of the reimbursement (ex. Harvard Law School, Cambridge, MA).
        purpose: Purpose of the reimbursement (ex. Baseball announcer).
        items_paid_or_provided: Items reimbursed (ex. Room, Airfare).
        redacted: Does the reimbursement contain redaction(s)?

spouse_incomes:
        id: ID of the record
        date_created: The moment when the item was created.
        date_modified: The last moment when the item was modified. A value in year 1750 indicates the value is unknown
        source_type: Source and type of income of judicial spouse (ex. Salary from Bank job).
        redacted: Does the spousal-income row contain redaction(s)?
        date_raw: Date of spousal income (ex. 2011).


=============
Person Fields
=============


fjc_id: The ID of a judge as assigned by the Federal Judicial Center.
Date of Birth: The date of birth for the person
name_last: The last name of this person
political_affiliations: Political affiliations for the judge. Variable length so combined by a comma
Death Country: The country where the person died.
Birth City: The city where the person was born.
name_suffix: Any suffixes that this person's name may have
aba_ratings: American Bar Association Ratings. Variable length so combined by a comma
name_first: The first name of this person.
Death State: The state where the person died.
sources: Sources about the person. Variable length so combined with a newline
Birth Country: The country where the person was born.
cl_id: A unique identifier for judge, also indicating source of data.
gender: The person's gender
name_middle: The middle name or names of this person
ftm_eid: The ID of a judge as assigned by the Follow the Money database.
Death City: The city where the person died.
positions: Positions of person. Variable length so combined with a newline
ftm_total_received: The amount of money received by this person and logged by Follow the Money.
Date of Death: The date of death for the person
religion: The religion of a person
educations: Educations of the person. Variable length so combined by a comma
bachelor school: Name of the school from which they got their Bachelor's degree, and/or Bachelor's of Law degree. Variable length so combined by a comma
juris doctor school: name of the school from which they got their jusris doctor degree. their Bachelor's degree, and/or Bachelor's of Law degree. Variable length so combined by a comma
race: Race of the person. Variable length so combined by a comma
Birth State: The state where the person was born.


Owner
Ali Rastegar
Hi
Ali Rastegar
Python code for working with NFL play by play data.

nfl_data_py nfl_data_py is a Python library for interacting with NFL data sourced from nflfastR, nfldata, dynastyprocess, and Draft Scout. Includes im

82 Jan 05, 2023
MkDocs Plugin allowing your visitors to *File > Print > Save as PDF* the entire site.

mkdocs-print-site-plugin MkDocs plugin that adds a page to your site combining all pages, allowing your site visitors to File Print Save as PDF th

Tim Vink 67 Jan 04, 2023
A Python library that simplifies the extraction of datasets from XML content.

xmldataset: simple xml parsing 🗃️ XML Dataset: simple xml parsing Documentation: https://xmldataset.readthedocs.io A Python library that simplifies t

James Spurin 75 Dec 30, 2022
Canonical source repository for PyYAML

PyYAML - The next generation YAML parser and emitter for Python. To install, type 'python setup.py install'. By default, the setup.py script checks

The YAML Project 2k Jan 01, 2023
An MkDocs plugin to export content pages as PDF files

MkDocs PDF Export Plugin An MkDocs plugin to export content pages as PDF files The pdf-export plugin will export all markdown pages in your MkDocs rep

Terry Zhao 266 Dec 13, 2022
A Json Schema Generator

JSON Schema Generator Author : Eru Michael About A Json Schema Generator. This is a generic program that: Reads a JSON file similar to what's present

1 Nov 10, 2021
This is a tool to make easier brawl stars modding using csv manipulation

Brawler Maker : Modding Tool for Brawl Stars This is a tool to make easier brawl stars modding using csv manipulation if you want to support me, just

6 Nov 16, 2022
💡 Catatan Materi Bahasa Pemrogramman Python

Repository catatan kuliah Andika Tulus Pangestu selama belajar Dasar Pemrograman dengan Python.

0 Oct 10, 2021
Żmija is a simple universal code generation tool.

Żmija Żmija is a simple universal code generation tool. It is intended to be used as a means to generate code that is both efficient and easily mainta

Adrian Samoticha 2 Nov 23, 2021
Main repository for the Sphinx documentation builder

Sphinx Sphinx is a tool that makes it easy to create intelligent and beautiful documentation for Python projects (or other documents consisting of mul

5.1k Jan 04, 2023
JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates.

JTEX JTEX is a command line tool (CLI) for rendering LaTeX documents from jinja-style templates. This package uses Jinja2 as the template engine with

Curvenote 15 Dec 21, 2022
PowerApps-docstring is a console based, pipeline ready application that automatically generates user and technical documentation for Power Apps.

powerapps-docstring PowerApps-docstring is a console based, pipeline ready application that automatically generates user and technical documentation f

Sebastian Muthwill 30 Nov 23, 2022
Demonstration that AWS IAM policy evaluation docs are incorrect

The flowchart from the AWS IAM policy evaluation documentation page, as of 2021-09-12, and dating back to at least 2018-12-27, is the following: The f

Ben Kehoe 15 Oct 21, 2022
DataRisk Detection Learning Resources

DataRisk Detection Learning Resources Data security: Based on the "data-centric security system" position, it generally refers to the entire security

Liao Wenzhe 59 Dec 05, 2022
Quick tutorial on orchest.io that shows how to build multiple deep learning models on your data with a single line of code using python

Deep AutoViML Pipeline for orchest.io Quickstart Build Deep Learning models with a single line of code: deep_autoviml Deep AutoViML helps you build te

Ram Seshadri 6 Oct 02, 2022
An interview engine for businesses, interview those who are actually qualified and are worth your time!

easyInterview V0.8B An interview engine for businesses, interview those who are actually qualified and are worth your time! Quick Overview You/the com

Vatsal Shukla 1 Nov 19, 2021
Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

Openapi-core is a Python library that adds client-side and server-side support for the OpenAPI Specification v3.

A 186 Dec 30, 2022
✨ Real-life Data Analysis and Model Training Workshop by Global AI Hub.

🎓 Data Analysis and Model Training Course by Global AI Hub Syllabus: Day 1 What is Data? Multimedia Structured and Unstructured Data Data Types Data

Global AI Hub 71 Oct 28, 2022
Sphinx-performance - CLI tool to measure the build time of different, free configurable Sphinx-Projects

CLI tool to measure the build time of different, free configurable Sphinx-Projec

useblocks 11 Nov 25, 2022
Lightweight, configurable Sphinx theme. Now the Sphinx default!

What is Alabaster? Alabaster is a visually (c)lean, responsive, configurable theme for the Sphinx documentation system. It is Python 2+3 compatible. I

Jeff Forcier 670 Dec 19, 2022