An evolutionary multi-agent platform based on mesa and NEAT

Related tags

MiscellaneousEvoAgent
Overview

EvoAgent

An evolutionary multi-agent platform based on mesa and NEAT
A video of an old version of EvoAgent can be found on youtube:
https://www.youtube.com/watch?v=pOF1H84xPik&ab_channel=VBiscione

Overview

With this tool you can evolve agents in a simple 2D environments.
At the beginning, agents are endowed with a simple neural network which is specified by their genome. With time, they'll make children, which will inherit the genome, plus some random mutations. The mutations will add a connetion, a node, or change the weight. The evolutionary system is based on NEAT by Kenneth Stanley (paper here). However, the main difference between this approach and the classic evolutionary algorithm approach, is the naturalistic approach we are using here. In a classic evolutionary algorithm we would use a fitness function, we would test our agents, and we would use a genetic operator for generating the next generation. We have none of that here. Agents will spawn a new children every x time-steps. The more they survive, the more children they'll get. I found this approach much more intuitively valid as will simply respond to the rule: the more you survive, the more you'll spread your genes. This will also allow for generational interactions (as multiple generations will live at the same time), in case one wants to run experiments on family behaviour etc.

Install

git clone [email protected]:ValerioB88/EvoAgent.git

EvoAgent plots everything in the browser. This is heavily dependent on the Mesa library. My fork of Project Mesa should be automatically added as a submodule.

Examples

There are several examples in the folder code/evoagent/experiments/, which should get you started. Most of this is self explanatory. For example, run the file difficult_env.py and a browser with the environment view should open. Both the model state and the population gets saved (the model state includes the population). You want to use the model state to continue a running simulation with exactly the same parameters, from exactly the same point (the model state includes the population state). Instead, you may want to test an evolved population on a different enviornment: in that case, load the population. Examples of both these cases in continue_sim.py and load_pop.py. Model and population get saved every 1000 time steps, or when you press s.

Environment View

This contains a canvas, information about the selected agent, and some plots. At each points there always be a selected agents, for which many info are shown in the text field on the right sidebar. You can change the selected agent by pressing a and d on your keyboard (in a future version, it will be possible to click on the agent on the canvas to select it). Other info are shown in the following image:

Shortcuts

q start/stop simulation
a/d previous/next agent
k kill selected agent
c selected agent spawn a child
s save model
x advance the simulation one step

Agents Behaviour

Agents will have a limited field of view, specified by the parameters fov and max_vision_dist. You can visualize them by checking Render FOV in the environment view. Each agent will have a maximum lifespan of max_age = 500, but it can die faster if its energy goes to 0. They have a energy_depletion rate of 0.008. An agent will eat a food token when it touches it, getting an energy increase of 0.8 (or whathever established by the current Epoch, see later), up to 1. Agent will become fertile after fertile_age_start = 90 timesteps. At that point, they will spawn a child every time_between_children = 100 timesteps. For now, reproduction is asexual, so there is no crossover (this will be expanded in a next version).

Agents can only perceive the closest food token, IF it's within their field of view. If the selected agent is perceiving a food token, this will be represented with a red color in the environment view. Agents' network input will be the linear distance to the perceived food token, the angular distance, and their own energy level. There will be two output units, one defining the forward/backward movement, the other one defining the rotation.

Epochs

The epochs are interval of times defined by the amount of food in the environment.

epochs = deque([Epoch(2000, [0.8]*200),
                Epoch(2000, [0.8]*100),
                Epoch(6000, [0.8]*75)])

This means that we have 3 epochs, the first lasting 2000 iteration, the last 6000 iterations. The first will have 200 food tokens, each provigin 0.8 units of energy (recall that [0.8]*200 generates a list of 200 elements of value 0.8: [0.8, 0.8, 0.8....]. By changing the second parametr, you can specify the distribution of food token easily. You can also have "posionous" food: Epoch(2000, [-0.2]*200) this will work. However, currently the agents don't have a way to differentiate between "good" and "bad" food, so it doesn't make much sense to use bad food right now.

The simulation will activate one epoch at the time, starting from the first one. When the last epoch finishes, the simulation stop. You can instead run the simulation indefinitively by setting the epoch duration to np.inf.

Speed Up Simulation

In the environment view, uncheck Render Canvas, then set the Frame per Second slider to 0. That's as fast as it can get!

Known Problems

If you stop the simulation and try to run it again, you'll get the error:
OSError: [WinError 10048] Only one usage of each socket address (protocol/network address/port) is normally permitted
To fix this, try to change the port in server.launch(...). If it doesn't work, close and open your browser. I know this is annoying, but hadn't have the time to fix it yet.

This has only been tested on Windows 10 and Edge 97. I don't plan to test it on any other configuration. Sorry!

To Do

☐ Add sexual reproduction: find a partner, do crossover
☐ Many agents options should be in a config file
☐ Select an agent by clicking on it with the mouse
☐ Implement data collection - or adapt mesa data collection
☐ Implement more ways to perceive food
☐ Implement ways to perceive other agents
☐ Server port stays open after code stops - which often lead to annoying behaviour. Find a way to fix this

Owner
Valerio1988
Valerio1988
addons to the turtle package that help you drew stuff more quickly

TurtlePlus addons to the turtle package that help you drew stuff more quickly --------------

1 Nov 18, 2021
A bot to view Dilbert comics directly from Discord and get updates of the comics automatically.

A bot to view Dilbert comics directly from Discord and get updates of the comics automatically

Raghav Sharma 3 Nov 30, 2022
A Dungeon and Dragons Toolkit using Python

Pythons-Dungeons A Dungeon and Dragons Toolkit using Python Rules: -When you are commiting please don't delete parts of the code that are important -A

2 Oct 21, 2021
python based clash stars made by grade 7 and 5

clash_stars python based clash stars made by grade 7 and 5 How to play: PLAYER ONE (LEFT PLAYER) Move: W,A,S,D Shoot: SHIFT PLAYER TWO (RIGHT PLAYER)

5 Oct 22, 2021
Reproduction repository for the MDX 2021 Hybrid Demucs model

Submission This is the submission for MDX 2021 Track A, for Track B go to the track_b branch. Submission Summary Submission ID: 151378 Submitter: defo

Alexandre Défossez 62 Dec 18, 2022
Demo repository for Saltconf21 talk - Testing strategies for Salt states

Saltconf21 testing strategies Demonstration repository for my Saltconf21 talk "Strategies for testing Salt states" Talk recording Slides and demos Get

Barney Sowood 3 Mar 31, 2022
A turtlebot auto controller allows robot to autonomously explore environment.

A turtlebot auto controller allows robot to autonomously explore environment.

Yuliang Zhong 1 Nov 10, 2021
Library for managing git hooks

Autohooks Library for managing and writing git hooks in Python. Looking for automatic formatting or linting, e.g., with black and pylint, while creati

Greenbone 165 Dec 16, 2022
a bit of my project :) and I use some of them for my school lesson or study for an exam! but some of them just for myself.

Handy Project a bit of my project :) and I use some of them for my school lesson or study for an exam! but some of them just for myself. the handy pro

amirkasra esmaeilian 13 Jul 05, 2021
APC Power Usage is an application which shows power consuption overtime for UPS units manufactured by APC.

APC Power Usage Introduction APC Power Usage is an application which shows power consuption overtime for UPS units manufactured by APC. Screenshoots G

Stefan Kondinski 3 Oct 08, 2021
Easy way to build a SaaS application using Python and Dash

EasySaaS This project will be attempt to make a great starting point for your next big business as easy and efficent as possible. This project will cr

xianhu 3 Nov 17, 2022
The-White-Noise-Project - The project creates noise intentionally

The-White-Noise-Project High quality audio matters everywhere, even in noise. Be

Ali Hakim Taşkıran 1 Jan 02, 2022
In this project we will implement AirBnB clone using console

AirBnB Clone In this project we will implement AirBnB clone using console. Usage The shell should work like this

Nandweza Allan 1 Feb 07, 2022
A collection of python exercises to help your learning path!

How to use Step 1: run this command git clone https://github.com/TechPenguineer/Python-Exercises.git Step 2: Run this command cd Python-Exercises You

Tech Penguin 5 Aug 05, 2021
Pacman - A suite of tools for manipulating debian packages

Overview Repository is a suite of tools for manipulating debian packages. At a h

Pardis Pashakhanloo 1 Feb 24, 2022
Team10 backend - A service which accepts a VRM (Vehicle Registration Mark)

GreenShip - API A service which accepts a VRM (Vehicle Registration Mark) and re

3D Hack 1 Jan 21, 2022
Simply create JIRA releases based on your github releases

Simply create JIRA releases based on your github releases

8 Jun 17, 2022
Yandex Media Browser

Браузер медиа для плагина Yandex Station Включайте музыку, плейлисты и радио на Яндекс.Станции из Home Assistant! Скриншот Корневой раздел: Библиотека

Alexander Ryazanov 35 Dec 19, 2022
🤖️ Plugin for Sentry which allows sending notification via DingTalk robot.

Sentry DingTalk Sentry 集成钉钉机器人通知 Requirments sentry = 21.5.1 特性 发送异常通知到钉钉 支持钉钉机器人webhook设置关键字 配置环境变量 DINGTALK_WEBHOOK: Optional(string) DINGTALK_CUST

1 Nov 04, 2021
Alternative StdLib for Nim for Python targets

Alternative StdLib for Nim for Python targets, hijacks Python StdLib for Nim

Juan Carlos 100 Jan 01, 2023