Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".

Overview

SSL-Backdoor

Abstract

Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representations. State-of-the-art self-supervised methods for learning representations from images (MoCo and BYOL) use an inductive bias that different augmentations (e.g. random crops) of an image should produce similar embeddings. We show that such methods are vulnerable to backdoor attacks where an attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images. The model performance is good on clean test images but the attacker can manipulate the decision of the model by showing the trigger at test time. Backdoor attacks have been studied extensively in supervised learning and to the best of our knowledge, we are the first to study them for self-supervised learning. Backdoor attacks are more practical in self-supervised learning since the unlabeled data is large and as a result, an inspection of the data to avoid the presence of poisoned data is prohibitive. We show that in our targeted attack, the attacker can produce many false positives for the target category by using the trigger at test time. We also develop a knowledge distillation based defense algorithm that succeeds in neutralizing the attack. Our code is available here: https://github.com/UMBCvision/SSL-Backdoor.

Paper

Backdoor Attacks on Self-Supervised Learning

Updates

  • 04/07/2021 - Poison generation code added.
  • 04/08/2021 - MoCo v2, BYOL code added.
  • 04/14/2021 - Jigsaw, RotNet code added.

Requirements

All experiments were run using the following dependencies.

  • python=3.7
  • pytorch=1.6.0
  • torchvision=0.7.0
  • wandb=0.10.21 (for BYOL)
  • torchnet=0.0.4 (for RotNet)

Optional

  • faiss=1.6.3 (for k-NN evaluation)

Create ImageNet-100 dataset

The ImageNet-100 dataset (random 100-class subset of ImageNet), commonly used in self-supervision benchmarks, was introduced in [1].

To create ImageNet-100 from ImageNet, use the provided script.

cd scripts
python create_imagenet_subset.py --subset imagenet100_classes.txt --full_imagenet_path <path> --subset_imagenet_path <path>

Poison Generation

To generate poisoned ImageNet-100 images, create your own configuration file. Some examples, which we use for our targeted attack experiments, are in the cfg directory.

  • You can choose the poisoning to be Targeted (poison only one category) or Untargeted
  • The trigger can be text or an image (We used triggers introduced in [2]).
  • The parameters of the trigger (e.g. location, size, alpha etc.) can be modified according to the experiment.
  • The poison injection rate for the training set can be modified.
  • You can choose which split to generate. "train" generates poisoned training data, "val_poisoned" poisons all the validation images for evaluation purpose. Note: The poisoned validation images are all resized and cropped to 224x224 before trigger pasting so that all poisoned images have uniform trigger size.
cd poison-generation
python generate_poison.py <configuration-file>

SSL Methods

Pytorch Custom Dataset

All images are loaded from filelists of the form given below.

<dir-name-1>/xxx.ext <target-class-index>
<dir-name-1>/xxy.ext <target-class-index>
<dir-name-1>/xxz.ext <target-class-index>

<dir-name-2>/123.ext <target-class-index>
<dir-name-2>/nsdf3.ext <target-class-index>
<dir-name-2>/asd932_.ext <target-class-index>

Evaluation

All evaluation scripts return confusion matrices for clean validation data and a csv file enumerating the TP and FP for each category.

MoCo v2 [3]

The implementation for MoCo is from https://github.com/SsnL/moco_align_uniform modified slightly to suit our experimental setup.

To train a ResNet-18 MoCo v2 model on ImageNet-100 on 2 NVIDIA GEFORCE RTX 2080 Ti GPUs:

cd moco
CUDA_VISIBLE_DEVICES=0,1 python main_moco.py \
                        -a resnet18 \
                        --lr 0.06 --batch-size 256 --multiprocessing-distributed \
                        --world-size 1 --rank 0 --aug-plus --mlp --cos --moco-align-w 0 \
                        --moco-unif-w 0 --moco-contr-w 1 --moco-contr-tau 0.2 \
                        --dist-url tcp://localhost:10005 \ 
                        --save-folder-root <path> \
                        --experiment-id <ID> <train-txt-file>

To train linear classifier on frozen MoCo v2 embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path>\
                        --train_file <path> \
                        --val_file <path>

We use the linear classifier normalization from CompRess: Self-Supervised Learning by Compressing Representations which says "To reduce the computational overhead of tuning the hyperparameters per experiment, we standardize the Linear evaluation as following. We first normalize the features by L2 norm, then shift and scale each dimension to have zero mean and unit variance."

To evaluate linear classifier on clean and poisoned validation set: (This script loads the cached mean and variance from previous step.)

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --resume <linear-classifier-checkpoint> \
                        --evaluate --eval_data <evaluation-ID> \
                        --load_cache

To run k-NN evaluation of frozen MoCo v2 embeddings on ImageNet-100 (faiss library needed):

CUDA_VISIBLE_DEVICES=0 python eval_knn.py \
                        -a moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --train_file <path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --eval_data <evaluation-ID>

BYOL [4]

The implementation for BYOL is from https://github.com/htdt/self-supervised modified slightly to suit our experimental setup.

To train a ResNet-18 BYOL model on ImageNet-100 on 4 NVIDIA GEFORCE RTX 2080 Ti GPUs: (This scripts monitors the k-NN accuracy on clean ImageNet-100 dataset at regular intervals.)

cd byol
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train \
                                    --exp_id <ID> \
                                    --dataset imagenet --lr 2e-3 --emb 128 --method byol \
                                    --arch resnet18 --epoch 200 \
                                    --train_file_path <path> \
                                    --train_clean_file_path <path> 
                                    --val_file_path <path>
                                    --save_folder_root <path>

To train linear classifier on frozen BYOL embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --train_clean_file_path <path> \
                            --val_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --val_file_path <path> \
                            --val_poisoned_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path> \
                            --clf_chkpt <linear-classifier-checkpoint-path> \
                            --eval_data <evaluation-ID> --evaluate

Jigsaw [5]

The implementation for Jigsaw is our own Pytorch reimplementation based on the authors’ Caffe code https://github.com/MehdiNoroozi/JigsawPuzzleSolver modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of Jigsaw, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA GEFORCE RTX 2080 Ti GPU: (The code doesn't support Pytorch distributed training.)

cd jigsaw
CUDA_VISIBLE_DEVICES=0 python train_jigsaw.py \
                                --train_file <path> \
                                --val_file <path> \
                                --save <path>

To train linear classifier on frozen Jigsaw embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py \
                        -a resnet18 --train_file <path> \
                        --val_file <path> \
                        --save <path> \
                        --weights <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py -a resnet18 \
                            --val_file <path> \
                            --val_poisoned_file <path> \
                            --weights <SSL-model-checkpoint-path> \
                            --resume <linear-classifier-checkpoint-path> \
                            --evaluate --eval_data <evaluation-ID>

RotNet [6]

The implementation for RotNet is from https://github.com/gidariss/FeatureLearningRotNet modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of RotNet, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA TITAN RTX GPU: (The code doesn't support Pytorch distributed training. Choose the experiment ID config file as required.)

cd rotnet
CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_RotNet_*> --save_folder <path>

To train linear classifier on frozen RotNet embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> --save_folder <path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> \
                            --save_folder <path> \
                            --evaluate --checkpoint=<epoch_num> --eval_data <evaluation-ID>

Acknowledgement

This material is based upon work partially supported by the United States Air Force under Contract No. FA8750‐19‐C‐0098, funding from SAP SE, NSF grant 1845216, and also financial assistance award number 60NANB18D279 from U.S. Department of Commerce, National Institute of Standards and Technology. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force, DARPA, or other funding agencies.

References

[1] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849,2019.

[2] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11957–11965, 2020.

[3] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020).

[4] Jean-Bastien Grill, Florian Strub, Florent Altch́e, and et al. Bootstrap your own latent - a new approach to self-supervised learning. In Advances in Neural Information Processing Systems, volume 33, pages 21271–21284, 2020.

[5] Noroozi, Mehdi, and Paolo Favaro. "Unsupervised learning of visual representations by solving jigsaw puzzles." European conference on computer vision. Springer, Cham, 2016.

[6] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations, 2018.

Citation

If you find our paper, code or models useful, please cite us using

@article{saha2021backdoor,
  title={Backdoor Attacks on Self-Supervised Learning},
  author={Saha, Aniruddha and Tejankar, Ajinkya and Koohpayegani, Soroush Abbasi and Pirsiavash, Hamed},
  journal={arXiv preprint arXiv:2105.10123},
  year={2021}
}

Questions/Issues

Please create an issue on the Github Repo directly or contact [email protected] for any questions about the code.

Owner
UMBC Vision
The Computer Vision Lab at the University of Maryland, Baltimore County (UMBC)
UMBC Vision
Tenssens framework focused on gathering information from free tools or resources. The intention is to help people find free OSINT resources.

Tenssens framework focused on gathering information from free tools or resources. The intention is to help people find free OSINT resources.

Md. Nur habib 31 Oct 21, 2022
Polkit - Local Privilege Escalation (CVE-2021-3560)

CVE-2021-3560 Polkit - Local Privilege Escalation Original discovery by kevin_backhouse from GitHub Security Lab References https://github.blog/2021-0

Salman Asad 1 Nov 12, 2021
Grafana-0Day-Vuln-POC

Grafana V8.0+版本存在未授权任意文件读取 0Day漏洞 - POC 1 漏洞信息 1.1 基本信息 漏洞厂商:Grafana 厂商官网:https://grafana.com/ 1.2 漏洞描述 Grafana是一个跨平台、开源的数据可视化网络应用程序平台。用户配置连接的数据源之后,Gr

mik1th0n 3 Dec 13, 2021
A forensic collection tool written in Python.

CHIRP A forensic collection tool written in Python. Watch the video overview 📝 Table of Contents 📝 Table of Contents 🧐 About 🏁 Getting Started Pre

Cybersecurity and Infrastructure Security Agency 1k Dec 09, 2022
INFO 3350/6350, Spring 2022, Cornell

Information Science 3350/6350 Text mining for history and literature Staff and sections Instructor: Matthew Wilkens Graduate TAs: Federica Bologna, Ro

Wilkens Teaching 6 Feb 21, 2022
Herramienta para descargar eventos de Sucuri WAF hacia disco.

Descarga los eventos de Sucuri Script para descargar los eventos del Sucuri Web Application Firewall (WAF) en el disco como archivos CSV. Requerimient

CSIRT-RD 2 Nov 29, 2021
✨ Powerfull & Universal Link Bypasser ✨

✨ Powerfull & Universal Link Bypasser ✨

Vodkarm06 4 Jun 03, 2022
A repository to detect the ARP spoofing in any devices and prevent Man in the Middle(MITM) attack using Python3

arp_spoof_detector A repository to detect the ARP spoofing in any devices and prevent Man in the Middle(MITM) attack using Python3 Usage: git clone ht

Surya Das N 1 Oct 30, 2021
Simple Python 3 script to detect the "Log4j" Java library vulnerability (CVE-2021-44228) for a list of URL with multithreading

log4j-detect Simple Python 3 script to detect the "Log4j" Java library vulnerability (CVE-2021-44228) for a list of URL with multithreading The script

Víctor García 187 Jan 03, 2023
Password List Maker

Red-Key Red-Key Password List Maker Version 1.1.2 Created By FireKing255 -=Features=- Create Random Password List Create Password List Create Password

FireKing255 7 Dec 26, 2021
macOS persistence tool

PoisonApple Command-line tool to perform various persistence mechanism techniques on macOS. This tool was designed to be used by threat hunters for cy

Cyborg Security, Inc 212 Dec 29, 2022
A collection of over 5.1 million sub-domains and assets belonging to public bug bounty programs, compiled into a repo, for performing bulk operations.

📂 Public Bug Bounty Targets Data By BugBountyResources A collection of over 5.1M sub-domains and assets belonging to bug bounty targets, all put in a

Bug Bounty Resources 87 Dec 13, 2022
NExfil is an OSINT tool written in python for finding profiles by username.

NExfil is an OSINT tool written in python for finding profiles by username. The provided usernames are checked on over 350 websites within few seconds.

thewhiteh4t 1.4k Jan 01, 2023
Magicspoofing - A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name

A python3 script for search possible misconfiguration in a DNS related to security protections of email service from the domain name. This project is for educational use, we are not responsible for i

20 Dec 02, 2022
Lnkbomb - Malicious shortcut generator for collecting NTLM hashes from insecure file shares

Lnkbomb Lnkbomb is used for uploading malicious shortcut files to insecure file

Joe Helle 216 Jan 08, 2023
Visibility and Mitigation for Log4J vulnerabilities

Visibility and Mitigation for Log4J vulnerabilities Several scripts for the visibility and mitigation of Log4J vulnerabilities. Static Scanner - Linux

SentinelLabs 15 May 21, 2022
IDA loader for Apple's iBoot, SecureROM and AVPBooter

IDA iBoot Loader IDA loader for Apple's iBoot, SecureROM and AVPBooter Installation Copy iboot-loader.py to the loaders folder in IDA directory. Credi

matteyeux 74 Dec 23, 2022
BOF-Roaster is an automated buffer overflow exploit machine which is begin written with Python 3.

BOF-Roaster is an automated buffer overflow exploit machine which is begin written with Python 3. On first release it was able to successfully break many of the most well-known buffer overflow exampl

Kaan Caglan 5 Nov 23, 2021
This a simple tool XSS Detection Suite for CTFs games

This a simple tool XSS Detection Suite for CTFs games

Mostafa 2 Nov 24, 2021
Windows Virus who destroy some impotants files on C:\windows\system32\

psychic-robot Windows Virus who destroy some importants files on C:\windows\system32\ Signatures of psychic-robot.PY (python file) : Bkav Pro : ASP.We

H-Tech-Dev36 1 Jan 06, 2022