Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".

Overview

SSL-Backdoor

Abstract

Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representations. State-of-the-art self-supervised methods for learning representations from images (MoCo and BYOL) use an inductive bias that different augmentations (e.g. random crops) of an image should produce similar embeddings. We show that such methods are vulnerable to backdoor attacks where an attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images. The model performance is good on clean test images but the attacker can manipulate the decision of the model by showing the trigger at test time. Backdoor attacks have been studied extensively in supervised learning and to the best of our knowledge, we are the first to study them for self-supervised learning. Backdoor attacks are more practical in self-supervised learning since the unlabeled data is large and as a result, an inspection of the data to avoid the presence of poisoned data is prohibitive. We show that in our targeted attack, the attacker can produce many false positives for the target category by using the trigger at test time. We also develop a knowledge distillation based defense algorithm that succeeds in neutralizing the attack. Our code is available here: https://github.com/UMBCvision/SSL-Backdoor.

Paper

Backdoor Attacks on Self-Supervised Learning

Updates

  • 04/07/2021 - Poison generation code added.
  • 04/08/2021 - MoCo v2, BYOL code added.
  • 04/14/2021 - Jigsaw, RotNet code added.

Requirements

All experiments were run using the following dependencies.

  • python=3.7
  • pytorch=1.6.0
  • torchvision=0.7.0
  • wandb=0.10.21 (for BYOL)
  • torchnet=0.0.4 (for RotNet)

Optional

  • faiss=1.6.3 (for k-NN evaluation)

Create ImageNet-100 dataset

The ImageNet-100 dataset (random 100-class subset of ImageNet), commonly used in self-supervision benchmarks, was introduced in [1].

To create ImageNet-100 from ImageNet, use the provided script.

cd scripts
python create_imagenet_subset.py --subset imagenet100_classes.txt --full_imagenet_path <path> --subset_imagenet_path <path>

Poison Generation

To generate poisoned ImageNet-100 images, create your own configuration file. Some examples, which we use for our targeted attack experiments, are in the cfg directory.

  • You can choose the poisoning to be Targeted (poison only one category) or Untargeted
  • The trigger can be text or an image (We used triggers introduced in [2]).
  • The parameters of the trigger (e.g. location, size, alpha etc.) can be modified according to the experiment.
  • The poison injection rate for the training set can be modified.
  • You can choose which split to generate. "train" generates poisoned training data, "val_poisoned" poisons all the validation images for evaluation purpose. Note: The poisoned validation images are all resized and cropped to 224x224 before trigger pasting so that all poisoned images have uniform trigger size.
cd poison-generation
python generate_poison.py <configuration-file>

SSL Methods

Pytorch Custom Dataset

All images are loaded from filelists of the form given below.

<dir-name-1>/xxx.ext <target-class-index>
<dir-name-1>/xxy.ext <target-class-index>
<dir-name-1>/xxz.ext <target-class-index>

<dir-name-2>/123.ext <target-class-index>
<dir-name-2>/nsdf3.ext <target-class-index>
<dir-name-2>/asd932_.ext <target-class-index>

Evaluation

All evaluation scripts return confusion matrices for clean validation data and a csv file enumerating the TP and FP for each category.

MoCo v2 [3]

The implementation for MoCo is from https://github.com/SsnL/moco_align_uniform modified slightly to suit our experimental setup.

To train a ResNet-18 MoCo v2 model on ImageNet-100 on 2 NVIDIA GEFORCE RTX 2080 Ti GPUs:

cd moco
CUDA_VISIBLE_DEVICES=0,1 python main_moco.py \
                        -a resnet18 \
                        --lr 0.06 --batch-size 256 --multiprocessing-distributed \
                        --world-size 1 --rank 0 --aug-plus --mlp --cos --moco-align-w 0 \
                        --moco-unif-w 0 --moco-contr-w 1 --moco-contr-tau 0.2 \
                        --dist-url tcp://localhost:10005 \ 
                        --save-folder-root <path> \
                        --experiment-id <ID> <train-txt-file>

To train linear classifier on frozen MoCo v2 embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path>\
                        --train_file <path> \
                        --val_file <path>

We use the linear classifier normalization from CompRess: Self-Supervised Learning by Compressing Representations which says "To reduce the computational overhead of tuning the hyperparameters per experiment, we standardize the Linear evaluation as following. We first normalize the features by L2 norm, then shift and scale each dimension to have zero mean and unit variance."

To evaluate linear classifier on clean and poisoned validation set: (This script loads the cached mean and variance from previous step.)

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --resume <linear-classifier-checkpoint> \
                        --evaluate --eval_data <evaluation-ID> \
                        --load_cache

To run k-NN evaluation of frozen MoCo v2 embeddings on ImageNet-100 (faiss library needed):

CUDA_VISIBLE_DEVICES=0 python eval_knn.py \
                        -a moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --train_file <path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --eval_data <evaluation-ID>

BYOL [4]

The implementation for BYOL is from https://github.com/htdt/self-supervised modified slightly to suit our experimental setup.

To train a ResNet-18 BYOL model on ImageNet-100 on 4 NVIDIA GEFORCE RTX 2080 Ti GPUs: (This scripts monitors the k-NN accuracy on clean ImageNet-100 dataset at regular intervals.)

cd byol
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train \
                                    --exp_id <ID> \
                                    --dataset imagenet --lr 2e-3 --emb 128 --method byol \
                                    --arch resnet18 --epoch 200 \
                                    --train_file_path <path> \
                                    --train_clean_file_path <path> 
                                    --val_file_path <path>
                                    --save_folder_root <path>

To train linear classifier on frozen BYOL embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --train_clean_file_path <path> \
                            --val_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --val_file_path <path> \
                            --val_poisoned_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path> \
                            --clf_chkpt <linear-classifier-checkpoint-path> \
                            --eval_data <evaluation-ID> --evaluate

Jigsaw [5]

The implementation for Jigsaw is our own Pytorch reimplementation based on the authors’ Caffe code https://github.com/MehdiNoroozi/JigsawPuzzleSolver modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of Jigsaw, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA GEFORCE RTX 2080 Ti GPU: (The code doesn't support Pytorch distributed training.)

cd jigsaw
CUDA_VISIBLE_DEVICES=0 python train_jigsaw.py \
                                --train_file <path> \
                                --val_file <path> \
                                --save <path>

To train linear classifier on frozen Jigsaw embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py \
                        -a resnet18 --train_file <path> \
                        --val_file <path> \
                        --save <path> \
                        --weights <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py -a resnet18 \
                            --val_file <path> \
                            --val_poisoned_file <path> \
                            --weights <SSL-model-checkpoint-path> \
                            --resume <linear-classifier-checkpoint-path> \
                            --evaluate --eval_data <evaluation-ID>

RotNet [6]

The implementation for RotNet is from https://github.com/gidariss/FeatureLearningRotNet modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of RotNet, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA TITAN RTX GPU: (The code doesn't support Pytorch distributed training. Choose the experiment ID config file as required.)

cd rotnet
CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_RotNet_*> --save_folder <path>

To train linear classifier on frozen RotNet embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> --save_folder <path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> \
                            --save_folder <path> \
                            --evaluate --checkpoint=<epoch_num> --eval_data <evaluation-ID>

Acknowledgement

This material is based upon work partially supported by the United States Air Force under Contract No. FA8750‐19‐C‐0098, funding from SAP SE, NSF grant 1845216, and also financial assistance award number 60NANB18D279 from U.S. Department of Commerce, National Institute of Standards and Technology. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force, DARPA, or other funding agencies.

References

[1] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849,2019.

[2] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11957–11965, 2020.

[3] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020).

[4] Jean-Bastien Grill, Florian Strub, Florent Altch́e, and et al. Bootstrap your own latent - a new approach to self-supervised learning. In Advances in Neural Information Processing Systems, volume 33, pages 21271–21284, 2020.

[5] Noroozi, Mehdi, and Paolo Favaro. "Unsupervised learning of visual representations by solving jigsaw puzzles." European conference on computer vision. Springer, Cham, 2016.

[6] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations, 2018.

Citation

If you find our paper, code or models useful, please cite us using

@article{saha2021backdoor,
  title={Backdoor Attacks on Self-Supervised Learning},
  author={Saha, Aniruddha and Tejankar, Ajinkya and Koohpayegani, Soroush Abbasi and Pirsiavash, Hamed},
  journal={arXiv preprint arXiv:2105.10123},
  year={2021}
}

Questions/Issues

Please create an issue on the Github Repo directly or contact [email protected] for any questions about the code.

Owner
UMBC Vision
The Computer Vision Lab at the University of Maryland, Baltimore County (UMBC)
UMBC Vision
💣 Bomb Crypto Bot 💣

💣 Bomb Crypto Bot 💣 ⚠️ Warning I am not responsible for any penalties incurred by those who use the bot, use it at your own risk. 📄 Documentation -

Matheus Benites 4 Apr 27, 2022
A simple python script to dump remote files through a local file read or local file inclusion web vulnerability.

A simple python script to dump remote files through a local file read or local file inclusion web vulnerability. Features Dump a single file w

Podalirius 48 Dec 03, 2022
Metal Gear Online 2 (MGO2) stage files decryption

Metal Gear Online 2 decryption tool Metal Gear Online 2 (MGO2) has an additional layer of encryption for stage files. I was not able to find info abou

4 Sep 02, 2022
A Python application to predict what is cooking

ez-cuisine-classifier A Python application to predict what is cooking Environment Python 3.9 Windows 10 Install python -m venv venv .\venv\Scripts\act

Zeheng Li 1 Jun 21, 2022
Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user

Exploiting CVE-2021-42278 and CVE-2021-42287 to impersonate DA from standard domain user Known issues it will not work outside kali , i will update it

Hossam 867 Dec 22, 2022
Script hecho en python para sacar la informacion del numero de telefono, Hecha con el API de numverify

Script hecho en python para sacar la informacion del numero de telefono, Hecha con el API de numverify

DW Dariel 5 Dec 03, 2022
Red Team Toolkit is an Open-Source Django Offensive Web-App which is keeping the useful offensive tools used in the red-teaming together.

RedTeam Toolkit Note: Only legal activities should be conducted with this project. Red Team Toolkit is an Open-Source Django Offensive Web-App contain

Mohammadreza Sarayloo 382 Jan 01, 2023
Phishing-Crack tools to punish friends

Phishing-Crack Phishing Tool Version 1.0.0 Created By temirovazat A Phishing Tool With PHP and Python3 Features Fake Instagram Phishing Page Fake Face

3 Oct 04, 2022
NS-Defacer: a auto html injecter, In other words It's a auto defacer to deface a lot of websites in less time

Overview NS-Defacer is a auto html injecter, In other words It's a auto defacer

NightSec 10 Nov 19, 2022
script that pulls cve collections from NVD.NIST.GOV.

# cvepull.py #script that pulls cve collections from NVD.NIST.GOV. #edit line 17 (timedelta) number to change the amount of days to search backwards

Aaron W 1 Dec 18, 2021
A python script to bypass 403-forbidden.

4nought3 A python script to bypass 403-forbidden. It covers methods like Host-Header Injections, Changing HTTP Requests Methods and URL-Injections. Us

11 Aug 27, 2022
Arbitrium is a cross-platform, fully undetectable remote access trojan, to control Android, Windows and Linux and doesn't require any firewall exceptions or port forwarding rules

About: Arbitrium is a cross-platform is a remote access trojan (RAT), Fully UnDetectable (FUD), It allows you to control Android, Windows and Linux an

Ayoub 861 Feb 18, 2021
阿里云accesskey利用工具

aliyun-accesskey-Tools 此工具用于查询ALIYUN_ACCESSKEY的主机,并且远程执行命令。 对于ALIYUN_ACCESSKEY利用方式可参考文章:记一次阿里云主机泄露Access Key到Getshell 工具截图 安装模块 pip install -r require

一灯老和尚 826 Jan 01, 2023
This program is a WiFi cracker, you can test many passwords for a desired wifi to find the wifi password!

WiFi_Cracker About the Program: This program is a WiFi cracker! Just run code and select a desired wifi to start cracking 💣 Note: you can use this pa

Sina.f 13 Dec 08, 2022
BETA: Layla - recon tool for bug bounty

WELCOME TO LAYLA Layla is a python script that automatically performs recon on a

Matheus Faria 68 Jan 04, 2023
Send CVE information to the specified mailbox (from Github)

Send CVE information to the specified mailbox (from Github)

91 Nov 08, 2022
🐎🖥《赛马娘》(ウマ娘: Pretty Derby)辅助脚本

auto-derby 自动化养马 育成结果 Nurturing result 功能 支持客户端 DMM (前台) 实验性 安卓 ADB 连接(后台)开发基于 1080x1920 分辨率 团队赛 (Team race) 有胜利确定奖励时吃帕菲 日常赛 (Daily race) PvP 活动赛 (Cha

NateScarlet 376 Jan 01, 2023
IDA Python Script for anti ollvm

IDA Python Script for anti ollvm

Shocker 62 Dec 23, 2022
Something I built to test for Log4J vulnerabilities on customer networks.

Log4J-Scanner Something I built to test for Log4J vulnerabilities on customer networks. I'm not responsible if your computer blows up, catches fire or

1 Dec 20, 2021
An advanced multi-threaded, multi-client python reverse shell for hacking linux systems

PwnLnX An advanced multi-threaded, multi-client python reverse shell for hacking linux systems. There's still more work to do so feel free to help out

0xTRAW 212 Dec 24, 2022