Scientific color maps and standardization tools

Related tags

Miscellaneousscicomap
Overview

drawing

buy me caffeine

Scientific color maps

Blog post

Scicomap Medium blog post (free)

Installation

pip install scicomap

Introduction

Scicomap is a package that provides scientific color maps and tools to standardize your favourite color maps if you don't like the built-in ones. Scicomap currently provides sequential, bi-sequential, diverging, circular, qualitative and miscellaneous color maps. You can easily draw examples, compare the rendering, see how colorblind people will perceive the color maps. I will illustrate the scicomap capabilities below.

This package is heavily based on the Event Horyzon Plot package and uses good color maps found in the the python portage of the Fabio Crameri, cmasher, palettable, colorcet and cmocean

Motivation

The accurate representation of data is essential. Many common color maps distort data through uneven colour gradients and are often unreadable to those with color-vision deficiency. An infamous example is the jet color map. These color maps do not render all the information you want to illustrate or even worse render false information through artefacts. Scientist or not, your goal is to communicate visual information in the most accurate and appealing fashion. Moreover, do not overlook colour-vision deficiency, which represents 8% of the (Caucasian) male population.

Color spaces

Perceptual uniformity is the idea that Euclidean distance between colors in color space should match human color perception distance judgements. For example, a blue and red that are at a distance d apart should look as discriminable as green and purple that are at a distance d apart. Scicomap uses the CAM02-UCS color space (Uniform Colour Space). Its three coordinates are usually denoted by J', a', and b'. And its cylindrical coordinates are J', C', and h'. The perceptual color space Jab is similar to Lab. However, Jab uses an updated color appearance model that in theory provides greater precision for discriminability measurements.

  • Lightness: also known as value or tone, is a representation of a color's brightness
  • Chroma: the intrinsic difference between a color and gray of an object
  • Hue: the degree to which a stimulus can be described as similar to or different from stimuli that are described as red, green, blue, and yellow

Encoding information

  • Lightness J': for a scalar value, intensity. It must vary linearly with the physical quantity
  • hue h' can encode an additional physical quantity, the change of hue should be linearly proportional to the quantity. The hue h' is also ideal in making an image more attractive without interfering with the representation of pixel values.
  • chroma is less recognizable and should not be used to encode physical information

Color map uniformization

Following the references and the theories, the uniformization is performed by

  • Making the color map linear in J'
  • Lifting the color map (making it lighter, i.e. increasing the minimal value of J')
  • Symmetrizing the chroma to avoid further artefacts
  • Avoid kinks and edges in the chroma curve
  • Bitonic symmetrization or not

Scicomap

Choosing the right type of color maps

Scicomap provides a bunch of color maps for different applications. The different types of color map are

import scicomap as sc
sc_map = sc.SciCoMap()
sc_map.get_ctype()
dict_keys(['diverging', 'sequential', 'multi-sequential', 'circular', 'miscellaneous', 'qualitative'])

I'll refer to the The misuse of colour in science communication for choosing the right scientific color map

Get the matplotlib cmap

plt_cmap_obj = sc_map.get_mpl_color_map()

Choosing the color map for a given type

Get the color maps for a given type

sc_map = sc.ScicoSequential()
sc_map.get_color_map_names()
dict_keys(['afmhot', 'amber', 'amber_r', 'amp', 'apple', 'apple_r', 'autumn', 'batlow', 'bilbao', 'bilbao_r', 'binary', 'Blues', 'bone', 'BuGn', 'BuPu', 'chroma', 'chroma_r', 'cividis', 'cool', 'copper', 'cosmic', 'cosmic_r', 'deep', 'dense', 'dusk', 'dusk_r', 'eclipse', 'eclipse_r', 'ember', 'ember_r', 'fall', 'fall_r', 'gem', 'gem_r', 'gist_gray', 'gist_heat', 'gist_yarg', 'GnBu', 'Greens', 'gray', 'Greys', 'haline', 'hawaii', 'hawaii_r', 'heat', 'heat_r', 'hot', 'ice', 'inferno', 'imola', 'imola_r', 'lapaz', 'lapaz_r', 'magma', 'matter', 'neon', 'neon_r', 'neutral', 'neutral_r', 'nuuk', 'nuuk_r', 'ocean', 'ocean_r', 'OrRd', 'Oranges', 'pink', 'plasma', 'PuBu', 'PuBuGn', 'PuRd', 'Purples', 'rain', 'rainbow', 'rainbow-sc', 'rainbow-sc_r', 'rainforest', 'rainforest_r', 'RdPu', 'Reds', 'savanna', 'savanna_r', 'sepia', 'sepia_r', 'speed', 'solar', 'spring', 'summer', 'tempo', 'thermal', 'thermal_r', 'thermal-2', 'tokyo', 'tokyo_r', 'tropical', 'tropical_r', 'turbid', 'turku', 'turku_r', 'viridis', 'winter', 'Wistia', 'YlGn', 'YlGnBu', 'YlOrBr', 'YlOrRd'])

Use a custom color map

As long as the color map is a matplotlib.colors.Colormap, matplotlib.colors.LinearSegmentedColormap or matplotlib.colors.ListedColormap object, you can pass it in the different classes.

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Assessing a color map

In order to assess if a color map should be corrected or not, scicomap provides a way to quickly check if the lightness is linear, how asymmetric and smooth is the chroma and how the color map renders for color-deficient users. I will illustrate some of the artefacts using classical images, as the pyramid and specific functions for each kind of color map.

An infamous example

import scicomap as sc
import matplotlib.pyplot as plt

# the thing that should not be
ugly_jet = plt.get_cmap("jet")
sc_map =  sc.ScicoMiscellaneous(cmap=ugly_jet)
f=sc_map.assess_cmap(figsize=(22,10))

Clearly, the lightness is not linear, has edges and kinks. The chroma is not smooth and asymmetrical. See the below illustration to see how bad and how many artefacts the jet color map introduces

Correcting a color map

Sequential color map

Let's assess the built-in color map hawaii without correction:

sc_map = sc.ScicoSequential(cmap='hawaii')
f=sc_map.assess_cmap(figsize=(22,10))

The color map seems ok, however, the lightness is not linear and the chroma is asymmetrical even if smooth. Those small defects introduce artefact in the information rendering, as we can visualize using the following example

f=sc_map.draw_example()

We can clearly see the artefacts, especially for the pyramid for which our eyes should only pick out the corners in the pyramid (ideal situation). Those artefacts are even more striking for color-deficient users (this might not always be the case). Hopefully, scicomap provides an easy way to correct those defects:

# fixing the color map, using the same minimal lightness (lift=None), 
# not normalizing to bitone and 
# smoothing the chroma
sc_map.unif_sym_cmap(lift=None, 
                     bitonic=False, 
                     diffuse=True)

# re-assess the color map after fixing it                     
f=sc_map.assess_cmap(figsize=(22,10))

After fixing the color map, the artefacts are less present

Get the color map object

plt_cmap_obj = sc_map.get_mpl_color_map()

Diverging color map

We can perform exactly the same fix for diverging, circular, miscellaneous and qualitative color maps. Let's take a diverging color map as an illustrative example:

div_map = sc.ScicoDiverging(cmap='vanimo')
f=div_map.assess_cmap(figsize=(22,10))

the original color map is as follows

which renders as

The larger dark transition might help to distinguish the positive and negative regions but introduces artefacts (pyramids, second column panels). By correcting the color map, we remove the smooth dark transition by a sharp one and we "lift" the dark part to make it a bit brighter. Human eyes are more able to differentiate the lighter colors.

div_map = sc.ScicoDiverging(cmap='vanimo')
div_map.unif_sym_cmap(lift=25, 
                      bitonic=False, 
                      diffuse=True)
f=div_map.assess_cmap(figsize=(22,10))

which render as

Use with matplotlib

Use a corrected colormap in a matplotlib figure

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
div_map = sc.ScicoDiverging(cmap='watermelon')

# correct the colormap
div_map.unif_sym_cmap(lift=15, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Correct a matplotlib colormap

import matplotlib.pyplot as plt
import matplotlib as mpl
import scicomap as sc
from scicomap.utils import _fn_with_roots

# load the color map
mpl_cmap_obj = plt.get_cmap("PRGn")
div_map = sc.ScicoDiverging(cmap=mpl_cmap_obj)

# correct the colormap
div_map.unif_sym_cmap(lift=None, 
                      bitonic=False, 
                      diffuse=True)

# get the fixed color map
fixed_cmap = div_map.get_mpl_color_map()
print(type(fixed_cmap))

# use it as you like
im = _fn_with_roots()
norm = mpl.colors.CenteredNorm()
divnorm = mpl.colors.TwoSlopeNorm(vmin=-1, vcenter=0, vmax=1.25)
fig = plt.figure(figsize=(3,3), facecolor="white")
ax = fig.add_subplot(1, 1, 1, facecolor="white")
pos = ax.imshow(im, cmap=fixed_cmap, aspect="auto", norm=divnorm)
fig.colorbar(pos, ax=ax);

Comparing color maps

You can easily compare, raw or corrected, color maps using a picture of your choice

Color-defiency rendering

Bearing in mind that +- 8% of males are color-deficient, you can visualize the rendering of any colormap for different kind of deficiencies.

c_l =  ["cividis", "inferno", "magma", "plasma", "viridis"]
f = sc.plot_colorblind_vision(ctype='sequential', 
                              cmap_list=c_l, 
                              figsize=(30, 4), 
                              n_colors=11, 
                              facecolor="black")

Sequential color maps

The built-in picture is coming from First M87 Event Horizon Telescope Results. IV. Imaging the Central Supermassive Black Hole as the main part of Scicomap is built upon the EHT visualization library.

f = sc.compare_cmap(image="grmhd", 
                    ctype='sequential', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': 20}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

returning

Diverging color maps

Comparing the diverging color maps using a vortex image

f = sc.compare_cmap(image="vortex", 
                    ctype='diverging', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

Circular color maps

Comparing circular/phase color maps using a complex function

f = sc.compare_cmap(image="phase", 
                    ctype='circular', 
                    ncols=15, 
                    uniformize=True, 
                    symmetrize=True, 
                    unif_kwargs={'lift': None}, 
                    sym_kwargs={'bitonic': False, 'diffuse': True})

All the built-in color maps

Sequential

sc.plot_colormap(ctype='sequential', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=True, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

Diverging

Mutli-sequential

Miscellaneous

Circular

Qualitative

sc.plot_colormap(ctype='qualitative', 
                 cmap_list='all', 
                 figsize=None, 
                 n_colors=5, 
                 facecolor="black", 
                 uniformize=False, 
                 symmetrize=False, 
                 unif_kwargs=None, 
                 sym_kwargs=None)

References

Changes log

0.3

  • Add a section "how to use with matplotlib"
  • [Bug] Center diverging color map in examples

0.2

  • [Bug] Fix typo in chart titles

0.1

  • First version
You might also like...
A new mini-batch framework for optimal transport in deep generative models, deep domain adaptation, approximate Bayesian computation, color transfer, and gradient flow.

BoMb-OT Python3 implementation of the papers On Transportation of Mini-batches: A Hierarchical Approach and Improving Mini-batch Optimal Transport via

Configure request params such as text, color, size etc. And then download the image
Configure request params such as text, color, size etc. And then download the image

Configure request params such as text, color, size etc. And then download the image

A Tandy Color Computer 1, 2, and 3 assembler written in Python

CoCo Assembler and File Utility Table of Contents What is it? Requirements License Installing Assembler Assembler Usage Input File Format Print Symbol

A simple single-color identicon generator

Identicons What are identicons? Setup: git clone https://github.com/vjdad4m/identicons.git cd identicons pip3 install -r requirements.txt chmod +x

The goal of this program was to find the most common color in my living room.

The goal of this program was to find the most common color in my living room. I found a dataset online with colors names and their corr

A lighweight screen color picker tool
A lighweight screen color picker tool

tkpick A lighweigt screen color picker tool Availability Only GNU/Linux 🐧 Installing Install via pip (No auto-update): [sudo] pip install tkpick Usa

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Coursework project for DIP class. The goal is to use vision to guide the Dashgo robot through two traffic cones in bright color.

Convert text with ANSI color codes to HTML or to LaTeX.

Convert text with ANSI color codes to HTML or to LaTeX.

It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color.

Blender_ObjectDataAttributesConvertTool It is a Blender Tool which can convert the Object Data Attributes in face corner to the UVs or Vertex Color. D

Releases(v0.4)
Owner
Thomas Bury
Physicist by passion and training, Data Scientist for a living (ok it's fun too), interdisciplinary by conviction. Human Bender for some topics.
Thomas Bury
Chicks get hostloc points regularly

hostloc_getPoints 小鸡定时获取hostloc积分 github action大规模失效,mjj平均一人10鸡,以下可以部署到自己的小鸡上

59 Dec 28, 2022
Howell County, Missouri, COVID-19 data and (unofficial) estimates

COVID-19 in Howell County, Missouri This repository contains the daily data files used to generate my COVID-19 dashboard for Howell County, Missouri,

Jonathan Thornton 0 Jun 18, 2022
Workshop OOP - Workshop OOP - Discover object-oriented programming

About: This is an open-source bot, the code is open for anyone to see, fork and

Francis Clairicia-Rose-Claire-Joséphine 5 May 02, 2022
Extract gene length based on featureCount calculation gene nonredundant exon length method.

Extract gene length based on featureCount calculation gene nonredundant exon length method.

laojunjun 12 Nov 21, 2022
VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM

VCM EE1.2 P-layer feature map anchor generation 137th MPEG-VCM

IPSL 6 Oct 18, 2022
An AI-powered device to stop people from stealing my packages.

Package Theft Prevention Device An AI-powered device to stop people from stealing my packages. Installation To install on a raspberry pi, clone the re

rydercalmdown 157 Nov 24, 2022
oracle arm registration script.

oracle_arm oracle arm registration script. 乌龟壳刷ARM脚本 本脚本优点 简单,主机配置好oci,然后下载main.tf即可,不用自己获取各种参数。 运行环境配置 本简单脚本使用python3编写,请自行配置好python3环境和requests库。(高版

test1234455 419 Jan 01, 2023
Org agenda in the console

This Python script reads an org agenda file (i.e. a regular org file with some active dates) and displays an interactive and colored year calendar with detailed information for each day when the mous

Nicolas P. Rougier 113 Jan 03, 2023
Spyware baseado em Python para Windows que registra como atividades da janela em primeiro plano, entradas do teclado.

Spyware baseado em Python para Windows que registra como atividades da janela em primeiro plano, entradas do teclado. Além disso, é capaz de fazer capturas de tela e executar comandos do shell em seg

Tavares 1 Oct 29, 2021
Calculadora-basica - Calculator with basic operators

Calculadora básica Calculadora com operadores básicos; O programa solicitará a d

Vitor Antoni 2 Apr 26, 2022
An async API wrapper for Dress To Impress written in Python.

dti.py An async API wrapper for Dress To Impress written in Python. Some notes: For the time being, there are no front-facing docs for this beyond doc

Steve C 1 Dec 14, 2022
Really bad lisp implementation. Fun with pattern matching.

Lisp-py This is a horrible, ugly interpreter for a trivial lisp. Don't use it. It was written as an excuse to mess around with the new pattern matchin

Erik Derohanian 1 Nov 23, 2021
Bootstraparse is a personal project started with a specific goal in mind: creating static html pages for direct display from a markdown-like file

Bootstraparse is a personal project started with a specific goal in mind: creating static html pages for direct display from a markdown-like file

1 Jun 15, 2022
Lightweight library for accessing data and configuration

accsr This lightweight library contains utilities for managing, loading, uploading, opening and generally wrangling data and configurations. It was ba

appliedAI Initiative 7 Mar 09, 2022
A tool to nowcast quarterly data with monthly indicators: US consumption example

MIDAS_Nowcaster A tool to nowcast quarterly data with monthly indicators: US consumption example Pulls data directly from FRED from a list of codes -

Gene Kindberg-Hanlon 3 Oct 06, 2022
UdemyPy is a bot that hourly looks for Udemy free courses and post them in my Telegram Channel: Free Courses.

UdemyPy UdemyPy is a bot that hourly looks for Udemy free courses and post them in my Telegram Channel: Free Courses. How does it work? For publishing

88 Dec 25, 2022
Add all JuliaLang unicode abbreviations to AutoKey.

Autokey Unicode characters Usage This script adds all the unicode character abbreviations supported by Julia to autokey. However, instead of [TAB], th

Randolf Scholz 49 Dec 02, 2022
ICEtool - ICEtool plugin for QGIS

ICEtool ICEtool is an all in one QGIS plugin to easily compute ground temperatur

Arthur Evrard 13 Dec 16, 2022
People tracker on the Internet: OSINT analysis and research tool by Jose Pino

trape (stable) v2.0 People tracker on the Internet: Learn to track the world, to avoid being traced. Trape is an OSINT analysis and research tool, whi

Jose Pino 7.3k Dec 30, 2022
Logo DYS (Doküman Yönetim Sitemi) API Python Implementation

dys-connector Logo DYS (Dokuman Yonetim Sistemi) API Python Implementation Python Package: https://pypi.org/project/dys-connector Quick Start from dys

Logo Group 8 Mar 19, 2022