Mapomatic - Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

mapomatic

Automatic mapping of compiled circuits to low-noise sub-graphs

Overview

One of the main painpoints in executing circuits on IBM Quantum hardware is finding the best qubit mapping. For a given circuit, one typically tries to pick the best initial_layout for a given target system, and then SWAP maps using that set of qubits as the starting point. However there are a couple of issues with that execution model. First, an initial_layout seletected, for example with respect to the noise characteristics of the system, need not be optimal for the SWAP mapping. In practice this leads to either low-noise layouts with extra SWAP gates inserted in the circuit, or optimally SWAP mapped circuits on (possibly) lousy qubits. Second, there is no way to know if the system you targeted in the compilation is actually the best one to execute the compiled circuit on. With 20+ quantum systems, it is hard to determine which device is actually ideal for a given problem.

mapomatic tries to tackle these issues in a different way. mapomatic is a post-compilation routine that finds the best low noise sub-graph on which to run a circuit given one or more quantum systems as target devices. Once compiled, a circuit has been rewritten so that its two-qubit gate structure matches that of a given sub-graph on the target system. mapomatic then searches for matching sub-graphs using the VF2 mapper in Qiskit (retworkx actually), and uses a heuristic to rank them based on error rates determined by the current calibration data. That is to say that given a single target system, mapomatic will return the best set of qubits on which to execute the compiled circuit. Or, given a list of systems, it will find the best system and set of qubits on which to run your circuit. Given the current size of quantum hardware, and the excellent performance of the VF2 mapper, this whole process is actually very fast.

Usage

To begin we first import what we need and load our IBM Quantum account.

import numpy as np
from qiskit import *
import mapomatic as mm

IBMQ.load_account()

Second we will select a provider that has one or more systems of interest in it:

provider = IBMQ.get_provider(group='deployed')

We then go through the usual step of making a circuit and calling transpile on a given backend:

qc = QuantumCircuit(5)
qc.h(0)
qc.cx(0,1)
qc.cx(0,2)
qc.cx(0,3)
qc.cx(0,4)
qc.measure_all()

Here we use optimization_level=3 as it is the best overall. It is also not noise-aware though, and thus can select lousy qubits on which to do a good SWAP mapping

trans_qc = transpile(qc, provider.get_backend('ibm_auckland'),optimization_level=3)

Now, a call to transpile inflates the circuit to the number of qubits in the target system. For small problems like the example here, this prevents us from finding the smaller sub-graphs. Thus we need to deflate the circuit down to just the number of active qubits:

small_qc = mm.deflate_circuit(trans_qc)

This deflated circuit, along with one or more backends can now be used to find the ideal system and mapping. Here we will look over all systems in the provider:

backends = provider.backends()

mm.best_mapping(small_qc, backends)

that returns a tuple with the target layout, system, and the computed error score:

([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036)

You can then use the best layout in a new call to transpile which will then do the desired mapping for you. Alternatively, we can ask for the best mapping on all systems, yielding a list sorted in order from best to worse:

mm.best_mapping(small_qc, backends, successors=True)
[([2, 1, 3, 5, 8], 'ibm_auckland', 0.09518597703355036),
 ([7, 10, 4, 1, 0], 'ibm_hanoi', 0.11217956761629977),
 ([5, 6, 3, 1, 2], 'ibm_lagos', 0.1123755285308975),
 ([7, 6, 10, 12, 15], 'ibmq_mumbai', 0.13708593236124922),
 ([3, 2, 5, 8, 9], 'ibmq_montreal', 0.13762962991865924),
 ([2, 1, 3, 5, 8], 'ibm_cairo', 0.1423752001642351),
 ([1, 2, 3, 5, 6], 'ibmq_casablanca', 0.15623594190953083),
 ([4, 3, 5, 6, 7], 'ibmq_brooklyn', 0.16468576058762707),
 ([7, 6, 10, 12, 15], 'ibmq_guadalupe', 0.17186581811649904),
 ([5, 3, 8, 11, 14], 'ibmq_toronto', 0.1735555283027388),
 ([5, 4, 3, 1, 0], 'ibmq_jakarta', 0.1792325518776976),
 ([2, 3, 1, 0, 14], 'ibm_washington', 0.2078576175452339),
 ([1, 0, 2, 3, 4], 'ibmq_bogota', 0.23973220166838316),
 ([1, 2, 3, 5, 6], 'ibm_perth', 0.31268969778002176),
 ([3, 4, 2, 1, 0], 'ibmq_manila', 0.3182338194159915),
 ([1, 0, 2, 3, 4], 'ibmq_santiago', 1.0)]

Because of the stochastic nature of the SWAP mapping, the optimal sub-graph may change over repeated compilations.

Getting optimal results

Because the SWAP mappers in Qiskit are stochastic, the number of inserted SWAP gates can vary with each run. The spread in this number can be quite large, and can impact the performance of your circuit. It is thus beneficial to transpile many instances of a circuit and take the best one. For example:

trans_qc_list = transpile([qc]*20, provider.get_backend('ibm_auckland'), optimization_level=3)

best_cx_count = [circ.count_ops()['cx'] for circ in trans_qc_list]
best_cx_count
[10, 13, 10, 7, 7, 10, 10, 7, 10, 7, 10, 10, 10, 10, 5, 7, 6, 13, 7, 10]

We obviously want the one with minimum CNOT gates here:

best_idx = np.where(best_cx_count == np.min(best_cx_count))[0][0]
best_qc = trans_qc_list[best_idx] 

We can then use this best mapped circuit to find the ideal qubit candidates via mapomatic.

best_small_qc = mm.deflate_circuit(best_qc)
mm.best_mapping(best_small_qc, backends, successors=True)
[([11, 13, 14, 16, 19], 'ibm_auckland', 0.07634155667667142),
 ([2, 0, 1, 4, 7], 'ibm_hanoi', 0.0799012562006044),
 ([4, 6, 5, 3, 1], 'ibm_lagos', 0.09374259142721897),
 ([10, 15, 12, 13, 14], 'ibm_cairo', 0.0938958618334792),
 ([5, 9, 8, 11, 14], 'ibmq_montreal', 0.09663069814643488),
 ([10, 6, 7, 4, 1], 'ibmq_mumbai', 0.10253149958591112),
 ([10, 15, 12, 13, 14], 'ibmq_guadalupe', 0.11075230351892806),
 ([11, 5, 4, 3, 2], 'ibmq_brooklyn', 0.13179514610612808),
 ([0, 2, 1, 3, 5], 'ibm_perth', 0.13309987649094324),
 ([4, 6, 5, 3, 1], 'ibmq_casablanca', 0.13570907147053013),
 ([2, 0, 1, 3, 5], 'ibmq_jakarta', 0.14449169384159954),
 ([5, 9, 8, 11, 14], 'ibmq_toronto', 0.1495199193756318),
 ([2, 0, 1, 3, 4], 'ibmq_quito', 0.16858894163955718),
 ([0, 2, 1, 3, 4], 'ibmq_belem', 0.1783430267967986),
 ([0, 2, 1, 3, 4], 'ibmq_lima', 0.20380730100751476),
 ([23, 25, 24, 34, 43], 'ibm_washington', 0.23527393065514557)]
Owner
Qiskit Partners
Qiskit Partners
Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver

Designed a greedy algorithm based on Markov sequential decision-making process in MATLAB/Python to optimize using Gurobi solver, the wheel size, gear shifting sequence by modeling drivetrain constrai

Sabbella Prasanna 1 Jan 11, 2022
Python library that makes it easy for data scientists to create charts.

Chartify Chartify is a Python library that makes it easy for data scientists to create charts. Why use Chartify? Consistent input data format: Spend l

Spotify 3.2k Jan 01, 2023
AB-test-analyzer - Python class to perform AB test analysis

AB-test-analyzer Python class to perform AB test analysis Overview This repo con

13 Jul 16, 2022
Manim is an animation engine for explanatory math videos.

A community-maintained Python framework for creating mathematical animations.

12.4k Dec 30, 2022
Draw interactive NetworkX graphs with Altair

nx_altair Draw NetworkX graphs with Altair nx_altair offers a similar draw API to NetworkX but returns Altair Charts instead. If you'd like to contrib

Zachary Sailer 206 Dec 12, 2022
A set of useful perceptually uniform colormaps for plotting scientific data

Colorcet: Collection of perceptually uniform colormaps Build Status Coverage Latest dev release Latest release Docs What is it? Colorcet is a collecti

HoloViz 590 Dec 31, 2022
A blender import/export system for Defold

defold-blender-export A Blender export system for the Defold game engine. Setup Notes There are no exhaustive documents for this tool yet. Its just no

David Lannan 27 Dec 30, 2022
Simple and fast histogramming in Python accelerated with OpenMP.

pygram11 Simple and fast histogramming in Python accelerated with OpenMP with help from pybind11. pygram11 provides functions for very fast histogram

Doug Davis 28 Dec 14, 2022
By default, networkx has problems with drawing self-loops in graphs.

By default, networkx has problems with drawing self-loops in graphs. It makes it hard to draw a graph with self-loops or to make a nicely looking chord diagram. This repository provides some code to

Vladimir Shitov 5 Jan 06, 2022
2021 grafana arbitrary file read

2021_grafana_arbitrary_file_read base on pocsuite3 try 40 default plugins of grafana alertlist annolist barchart cloudwatch dashlist elasticsearch gra

ATpiu 5 Nov 09, 2022
Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python

Petrel Tools for writing, submitting, debugging, and monitoring Storm topologies in pure Python. NOTE: The base Storm package provides storm.py, which

AirSage 247 Dec 18, 2021
Visualise Ansible execution time across playbooks, tasks, and hosts.

ansible-trace Visualise where time is spent in your Ansible playbooks: what tasks, and what hosts, so you can find where to optimise and decrease play

Mark Hansen 81 Dec 15, 2022
Kglab - an abstraction layer in Python for building knowledge graphs

Graph Data Science: an abstraction layer in Python for building knowledge graphs, integrated with popular graph libraries – atop Pandas, RDFlib, pySHACL, RAPIDS, NetworkX, iGraph, PyVis, pslpython, p

derwen.ai 466 Jan 09, 2023
cqMore is a CadQuery plugin based on CadQuery 2.1.

cqMore (under construction) cqMore is a CadQuery plugin based on CadQuery 2.1. Installation Please use conda to install CadQuery and its dependencies

Justin Lin 36 Dec 21, 2022
Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Flexitext is a Python library that makes it easier to draw text with multiple styles in Matplotlib

Tomás Capretto 93 Dec 28, 2022
📊 Extensions for Matplotlib

📊 Extensions for Matplotlib

Nico Schlömer 519 Dec 30, 2022
Learn Data Science with focus on adding value with the most efficient tech stack.

DataScienceWithPython Get started with Data Science with Python An engaging journey to become a Data Scientist with Python TL;DR Download all Jupyter

Learn Python with Rune 110 Dec 22, 2022
Scientific measurement library for instruments, experiments, and live-plotting

PyMeasure scientific package PyMeasure makes scientific measurements easy to set up and run. The package contains a repository of instrument classes a

PyMeasure 445 Jan 04, 2023
Some useful extensions for Matplotlib.

mplx Some useful extensions for Matplotlib. Contour plots for functions with discontinuities plt.contour mplx.contour(max_jump=1.0) Matplotlib has pro

Nico Schlömer 519 Dec 30, 2022
A collection of 100 Deep Learning images and visualizations

A collection of Deep Learning images and visualizations. The project has been developed by the AI Summer team and currently contains almost 100 images.

AI Summer 65 Sep 12, 2022