Structural basis for solubility in protein expression systems

Overview

Structural basis for solubility in protein expression systems

Twitter Follow GitHub repo size

Large-scale protein production for biotechnology and biopharmaceutical applications rely on high protein solubility in expression systems. Solubility has been measured for a significant fraction of E. coli and S. cerevisiae proteomes and these datasets are routinely used to train predictors of protein solubility in different organisms. Thanks to continued advances in experimental structure-determination and modelling, many of these solubility measurements can now be paired with accurate structural models.

The challenge is mentored by Christopher Ing and Mark Fingerhuth.

Aim of the challenge

It is the objective of this project to use our provided dataset of protein structure and solubility value pairs in order to produce a solubility predictor with comparable accuracy to sequence-based predictors reported in the literature. The provided dataset to be used in this project is created by following the dataset curation procedure described in the SOLart paper, and this hackathon project has a similar aim to this manuscript.

The dataset

The process of generating the dataset is described in the SOLArt manuscript. At a high level, all experimentally tested E. coli and S. cerevisiae proteins were matched through Uniprot IDs to known crystallographic structures or high sequence similarity homology models. After balancing the fold types using CATH, a dataset containing a balanced spread of solubility values was produced. The resulting proteins for the training and testing of these models were prepared and disclosed in the supplemental material of this paper as a list of (Uniprot,PDB,Chain,Solubility) pairs. The PDB files were not included in this work so we had to re-extract them from SWISS-MODEL. Whenever a crystallographic structure was present, it was used, assuming high coverage over the Uniprot sequence. In some cases, the original PDB templates used within the original SOLArt paper had been superceded by improved templates, and we opted to take the highest resolution, highest sequence identity, models in our updated dataset. We stripped away all irrelevant chains and heteroatoms.

If issues are identified with individual structures, please refer to the Uniprot ID and manually investigate the best template. In some cases, we needed to improve structure correctness by modelling missing atoms/residues inside the Chemical Computing Group software MOE on a case-by-case basis.

The dataset can be found in the data/ subdirectory - it is already divided into training/ and test/ data. The training/ data comes with solubility_values.csv and solublity_values.yaml (same content just different format) which both contain the solubility target values for all the PDB files provided in that directory. Note that each PDB file is named after the Uniprot identifier of the respective protein and the protein column in the solubility_values.csv also contains the Uniprot identifiers.

The test/ dataset consists of three different subdirectories (protein structures derived from different organisms and with different approaches) and you should NOT use them for any training. Only the yeast_crystal_structs/ directory contains solubility_values.csv and solublity_values.yaml (same content just different format) files which you can use for some local testing & validation. In order to find out your performance on the entire test dataset you need to use the automated benchmarking system (see below).

Example output

Your code should output a file called predictions.csv in the following format:

protein,solubility
P69829,83
P31133,62

whereby the protein column contains the Uniprot ID (corresponds to the filename of the PDB files) and the solubility column contains the predicted solubility value (can be int or float).

Note, that there are three (!) test subsets but you are expected to submit all the predictions in one file (not three) for the benchmarking system to work.

Automated benchmarking system

The continuous integration script in .github/workflows/ci.yml will automatically build the Dockerfile on every commit to the main branch. This docker image will be published as your hackathon submission to https://biolib.com//. For this to work, make sure you set the BIOLIB_TOKEN and BIOLIB_PROJECT_URI accordingly as repository secrets.

To read more about the benchmarking system click here.

Say thanks

Give this repo a star: GitHub Repo stars

Star the ProteinQure org on Github: GitHub Org's stars

Owner
ProteinQure
ProteinQure
The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

The third home of the bare Programming Language (1st there's my heart, the forest came second and then there's Github :)

Garren Souza 7 Dec 24, 2022
A script to add issues to a project in Github based on label or status.

Add Github Issues to Project (Beta) A python script to move Github issues to a next-gen (beta) Github Project Getting Started These instructions will

Kate Donaldson 3 Jan 16, 2022
SiliconCompiler is an open source compiler framework that automates translation from source code to silicon.

SiliconCompiler is an open source compiler framework that aims to automate translation from source code to silicon.

siliconcompiler 539 Jan 04, 2023
tg-nearby Trilateration of nearby Telegram users as described in my corresponding article.

tg-nearby Trilateration of nearby Telegram users as described in my corresponding article. Setup If you want to toy with the code in this repository

Maximilian Jugl 75 Dec 26, 2022
Check a discord message and give it a percentage of scamminess

scamChecker Check a discord message and give it a percentage of scamminess Run the bot, and run the command !scamCheck and it will return a percentage

3 Sep 22, 2022
List of resources for learning Category Theory

A curated list of resources for studying category theory. As resources aimed at mathematicians are abundant, this list is aimed at materials whose target audience is not people with a graduate-level

Bruno Gavranović 100 Jan 01, 2023
Exactly what it sounds like, which is something rad

EyeWitnessTheFitness External recon got ya down? That scan prevention system preventing you from enumerating web pages? Well look no further, I have t

Ellis Springe 18 Dec 31, 2022
How did Covid affect businesses?

NYC_Business_Analysis How did Covid affect businesses? COVID's effect on NYC businesses We all know that businesses in NYC have been affected by COVID

AK 1 Jan 15, 2022
ELF file deserializer and serializer library

elfo ELF file deserializer and serializer library. import elfo elf = elfo.ELF.from_path('main') elf ELF( header=ELFHeader( e_ident=e

Filipe Laíns 3 Aug 23, 2021
Python module to work with Magneto Database directly without using broken Magento 2 core

Python module to work with Magneto Database directly without using broken Magento 2 core

Egor Shitikov 13 Nov 10, 2022
A wrapper for the apt package manager.

A wrapper for the apt package manager.

531 Jan 04, 2023
A command line interface tool converting starknet warp transpiled outputs into readable cairo contracts.

warp-to-cairo warp-to-cairo is a simple tool converting starknet warp outputs (NethermindEth/warp) outputs into readable cairo contracts. The warp out

Michael K 5 Jun 10, 2022
Tools for teachers and students using nng (Natural Number Game)

nngtools Usage Place your nngsave.json to the directory in which you want to extract the level files. Place nngmap.json on the same directory. Run nng

Thanos Tsouanas 1 Dec 12, 2021
A minimal configuration for a dockerized kafka project.

Docker Kafka Quickstart A minimal configuration for a dockerized kafka project. Usage: Run this command to build kafka and zookeeper containers, and c

Nouamane Tazi 5 Jan 12, 2022
Procedurally generated Oblique Strategies for writing your own Oblique Strategies

Procedurally generated Oblique Strategies for writing your own Oblique Strategies.

Gordon Brander 13 Aug 17, 2022
Code for Crowd counting via unsupervised cross-domain feature adaptation.

CDFA-pytorch Code for Unsupervised crowd counting via cross-domain feature adaptation. Pre-trained models Google Drive Baidu Cloud : t4qc Environment

Guanchen Ding 6 Dec 11, 2022
A Python program that generates a maze that solves itself using DFS

Maze Generator And Solver Program Purpose: Generates a maze that then solves itself Language: Python and Pygame Algorithm: Randomized DFS / Floodfill

Joshua Liu 1 Jul 25, 2022
This repo is a collection of programs and websites templates too

📢 Register here for Hacktoberfest and make four pull requests (PRs) between October 1st-31st to grab free SWAGS 🔥 . IMPORTANT While making pull requ

Binayak Jha - 2 7 Oct 03, 2022
Hy - A dialect of Lisp that's embedded in Python

Hy Lisp and Python should love each other. Let's make it happen. Hy is a Lisp dialect that's embedded in Python. Since Hy transforms its Lisp code int

Hy Society 4.4k Jan 02, 2023
A script to generate NFT art living on the Solana blockchain.

NFT Generator This script generates NFT art based on its desired traits with their specific rarities. It has been used to generate the full collection

Rude Golems 24 Oct 08, 2022