Deep Multi-Magnification Network for multi-class tissue segmentation of whole slide images

Related tags

Deep LearningDMMN
Overview

Deep Multi-Magnification Network

This repository provides training and inference codes for Deep Multi-Magnification Network published here. Deep Multi-Magnification Network automatically segments multiple tissue subtypes by a set of patches from multiple magnifications in histopathology whole slide images.

Prerequisites

  • Python 3.6.7
  • Pytorch 1.3.1
  • OpenSlide 1.1.1
  • Albumentations

Training

The main training code is training.py. The trained segmentation model will be saved under runs/ by default.

In addition to config, you may need to update the following variables before running training.py:

  • n_classes: the number of tissue subtype classes + 1
  • train_file and val_file: the list of training and validation patches
    • Slide patches must be stored as /path/slide_tiles/patch_1.jpg, /path/slide_tiles/patch_2.jpg, ... /path/slide_tiles/patch_N.jpg
    • The coresponding label patches must be stored as /path/label_tiles/patch_1.png, /path/label_tiles/patch_2.png, ... /path/label_tiles/patch_N.png
    • train_file and val_file must be formatted as
     /path/,patch_1
     /path/,patch_2
     ...
     /path/,patch_N
    
  • d: the number of pixels of each class in the training set for weighted cross entropy loss function

Note that pixels labeled as class 0 are unannotated and will not contribute to the training.

Inference

The main inference codes are slidereader_coords.py and inference.py. You first need to run slidereader_coords.py to generate patch coordinates to be segmented in input whole slide images. After generating patch coordinates, you may run inference.py to generate segmentation predictions of input whole slide images. The segmentation predictions will be saved under imgs/ by default.

You may need to update the following variables before running slidereader_coords.py:

  • slides_to_read: the list of whole slide images
  • coord_file: an output file listing all patch coordinates

In adition to model_path and out_path, you may need to update the following variables before running inference.py:

  • n_classes: the number of tissue subtype classes + 1
  • test file: the list of patch coordinates generated by slidereader_coords.py
  • data_path: the path where whole slide images are located

Please download the pretrained breast model here.

Note that segmentation predictions will be generated in 4-bit BMP format. The size limit for 4-bit BMP files is 232 pixels.

License

This project is under the CC-BY-NC 4.0 license. See LICENSE for details. (c) MSK

Acknowledgments

Reference

If you find our work useful, please cite our paper:

@article{ho2021,
  title={Deep Multi-Magnification Networks for multi-class breast cancer image segmentation},
  author={Ho, David Joon and Yarlagadda, Dig V.K. and D'Alfonso, Timothy M. and Hanna, Matthew G. and Grabenstetter, Anne and Ntiamoah, Peter and Brogi, Edi and Tan, Lee K. and Fuchs, Thomas J.},
  journal={Computerized Medical Imaging and Graphics},
  year={2021},
  volume={88},
  pages={101866}
}
Owner
Computational Pathology
Computational Pathology
Code release for ConvNeXt model

A ConvNet for the 2020s Official PyTorch implementation of ConvNeXt, from the following paper: A ConvNet for the 2020s. arXiv 2022. Zhuang Liu, Hanzi

Meta Research 4.6k Jan 08, 2023
Lexical Substitution Framework

LexSubGen Lexical Substitution Framework This repository contains the code to reproduce the results from the paper: Arefyev Nikolay, Sheludko Boris, P

Samsung 37 Sep 15, 2022
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
[NeurIPS 2019] Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss

Learning Imbalanced Datasets with Label-Distribution-Aware Margin Loss Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, Tengyu Ma This is the offi

Kaidi Cao 528 Jan 01, 2023
ONNX-PackNet-SfM: Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Python scripts for performing monocular depth estimation using the PackNet-SfM model in ONNX

Ibai Gorordo 14 Dec 09, 2022
YOLOv4-v3 Training Automation API for Linux

This repository allows you to get started with training a state-of-the-art Deep Learning model with little to no configuration needed! You provide your labeled dataset or label your dataset using our

BMW TechOffice MUNICH 626 Dec 31, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Live Hand Tracking Using Python

Live-Hand-Tracking-Using-Python Project Description: In this project, we will be

Hassan Shahzad 2 Jan 06, 2022
TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular potentials

TorchMD-net TorchMD-Net provides state-of-the-art graph neural networks and equivariant transformer neural networks potentials for learning molecular

TorchMD 104 Jan 03, 2023
(NeurIPS 2021) Realistic Evaluation of Transductive Few-Shot Learning

Realistic evaluation of transductive few-shot learning Introduction This repo contains the code for our NeurIPS 2021 submitted paper "Realistic evalua

Olivier Veilleux 14 Dec 13, 2022
Code for the AI lab course 2021/2022 of the University of Verona

AI-Lab Code for the AI lab course 2021/2022 of the University of Verona Set-Up the environment for the curse Download Anaconda for your System. Instal

Davide Corsi 5 Oct 19, 2022
Display, filter and search log messages in your terminal

Textualog Display, filter and search logging messages in the terminal. This project is powered by rich and textual. Some of the ideas and code in this

Rik Huygen 24 Dec 10, 2022
Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer"

TSOD Code for the ICME 2021 paper "Exploring Driving-Aware Salient Object Detection via Knowledge Transfer" Usage For training, open train_test, run p

Jinming Su 2 Dec 23, 2021
MAME is a multi-purpose emulation framework.

MAME's purpose is to preserve decades of software history. As electronic technology continues to rush forward, MAME prevents this important "vintage" software from being lost and forgotten.

Michael Murray 6 Oct 25, 2020
Library for fast text representation and classification.

fastText fastText is a library for efficient learning of word representations and sentence classification. Table of contents Resources Models Suppleme

Facebook Research 24.1k Jan 01, 2023
A PyTorch Reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution

TecoGAN-PyTorch Introduction This is a PyTorch reimplementation of TecoGAN: Temporally Coherent GAN for Video Super-Resolution (VSR). Please refer to

165 Dec 17, 2022
ConformalLayers: A non-linear sequential neural network with associative layers

ConformalLayers: A non-linear sequential neural network with associative layers ConformalLayers is a conformal embedding of sequential layers of Convo

Prograf-UFF 5 Sep 28, 2022
Learning Generative Models of Textured 3D Meshes from Real-World Images, ICCV 2021

Learning Generative Models of Textured 3D Meshes from Real-World Images This is the reference implementation of "Learning Generative Models of Texture

Dario Pavllo 115 Jan 07, 2023
Dataset and Code for the paper "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021), and "Depth-only Object Tracking" (BMVC2021)

DeT and DOT Code and datasets for "DepthTrack: Unveiling the Power of RGBD Tracking" (ICCV2021) "Depth-only Object Tracking" (BMVC2021) @InProceedings

Yan Song 55 Dec 15, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 08, 2023