Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Overview

Y-Net

Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021

Project page: ipcv.github.io/Acappella/
Paper: Arxiv, Supplementary Material, BMVC (not available yet)

Running a demo / Y-Net Inference

We provide simple functions to load models with pre-trained weights. Steps:

  1. Clone the repo or download y-net>VnBSS>models (models can run as a standalone package)
  2. Load a model:
from VnBSS import y_net_gr # or from models import y_net_gr 
model = y_net_gr()

Examples can be found at y_net>examples. Also you can have a look at tcol.py or example.py, files which computes the demos shown in the website.
Check a demo fully working:
Open In Colab

Citation

@inproceedings{acappella,
    author    = {Juan F. Montesinos and
                 Venkatesh S. Kadandale and
                 Gloria Haro},
    title     = {A cappella: Audio-visual Singing VoiceSeparation},
    booktitle = {British Machine Vision Conference (BMVC)},
    year      = {2021},

}

.
.
.
.
.
.

Training / Using DEV code

Training

The most difficult part is to prepare the dataset as everything is builded upon a very specific format.
To run training:
python run.py -m model_name --workname experiment_name --arxiv_path directory_of_experiments --pretrained_from path_pret_weights
You can inspect the argparse at default.py>argparse_default.
Possible model names are: y_net_g, y_net_gr, y_net_m,y_net_r,u_net,llcp

Testing

  1. Go to manuscript_scripts and replace checkpoint paths by yours in the testing scripts.
  2. Run: bash manuscript_scripts/test_gr_r.sh
  3. Replace the paths of manuscript_scripts/auto_metrics.py by your experiment_directory path.
  4. Run: python manuscript_scripts/auto_metrics.py to visualise results.

It's a complicated framework. HELP!

The best option to run the framework is to debug! Having a runable code helps to see input shapes, dataflow and to run line by line. Download The circle of life demo with the files already processed. It will act like a dataset of 6 samples. You can download it from Google Drive 1.1 Gb.

  1. Unzip the file
  2. run python run.py -m y_net_gr (for example) TODO :D

Everything has been configured to run by default this way.

The model

Each effective model is wrapped by a nn.Module which takes care of computing the STFT, the mask, returning the waveform etcetera... This wrapper can be found at VnBSS>models>y_net.py>YNet. To get rid of this you can simply inherit the class, take minimum layers and keep the core_forward method, which is the inference step without the miscelanea.

Downloading the datasets

To download the Acappella Dataset run the script at preproc>preprocess.py
To download the demos used in the website run preproc>demo_preprocessor.py
Audioset can be downloaded via webapp, streamlit run audioset.py

Computing the demos

Demos shown in the website can be computed:

  • The circle of life demo is obtained by running tcol.py. First turn the flag COMPUTE=True. To visualize the results turn the flag COMPUTE=False and run a streamlit run tcol.py.

FAQs

  1. How to change the optimizer's hyperparameters?
    Go to config>optimizer.json
  2. How to change clip duration, video framerate, STFT parameters or audio samplerate?
    Go to config>__init__.py
  3. How to change the batch size or the amount of epochs?
    Go to config>hyptrs.json
  4. How to dump predictions from the training and test set
    Go to default.py. Modify DUMP_FILES (can be controlled at a subset level). force argument skips the iteration-wise conditions and dumps for every single network prediction.
  5. Is tensorboard enabled?
    Yes, you will find tensorboard records at your_experiment_directory/used_workname/tensorboard
  6. Can I resume an experiment?
    Yes, if you set exactly the same experiment folder and workname, the system will detect it and will resume from there.
  7. I'm trying to resume but found AssertionError If there is an exception before running the model
  8. How to change the amount of layers of U-Net
    U-net is build dynamically given a list of layers per block as shown in models>__init__.py from outer to inner blocks.
  9. How to modify the default network values?
    The json file config>net_cfg.json overwrites any default configuration from the model.
Owner
Juan F. Montesinos
PhD student at Pompeu Fabra university Barcelona
Juan F. Montesinos
SomaFM Plugin for Kodi

SomaFM XBMC Plugin This description is a bit outdated. You can simply install this addon by browsing the official repositories from within Kodi. Insta

7 Jan 21, 2022
Dataset and baseline code for the VocalSound dataset (ICASSP2022).

VocalSound: A Dataset for Improving Human Vocal Sounds Recognition Introduction Citing Download VocalSound Dataset Details Baseline Experiment Contact

Yuan Gong 58 Jan 03, 2023
A Python library for audio data augmentation. Inspired by albumentations. Useful for machine learning.

Audiomentations A Python library for audio data augmentation. Inspired by albumentations. Useful for deep learning. Runs on CPU. Supports mono audio a

Iver Jordal 1.2k Jan 07, 2023
Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums)

LAKH MuseNet MIDI Dataset Full LAKH MIDI dataset converted to MuseNet MIDI output format (9 instruments + drums) Bonus: Choir on Channel 10 Please CC

Alex 6 Nov 20, 2022
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling

MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling Demos | Blog Post | Colab Notebook | Paper | MIDI-DDSP is a hierarchical

Magenta 239 Jan 03, 2023
Audio book player for senior visually impaired.

PI Zero W Audio Book Motivation and requirements My dad is practically blind and at 80 years has trouble hearing and operating tiny or more complicate

Andrej Hosna 29 Dec 25, 2022
Library for working with sound files of the format: .ogg, .mp3, .wav

Library for working with sound files of the format: .ogg, .mp3, .wav. By work is meant - playing sound files in a straight line and in the background, obtaining information about the sound file (auth

Romanin 2 Dec 15, 2022
Multi-Track Music Generation with the Transfomer and the Johann Sebastian Bach Chorales dataset

MMM: Exploring Conditional Multi-Track Music Generation with the Transformer and the Johann Sebastian Bach Chorales Dataset. Implementation of the pap

102 Dec 08, 2022
The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases.

The venturimeter works on the principle of Bernoulli's equation, i.e., the pressure decreases as the velocity increases. The cross-section of the throat is less than the cross-section of the inlet pi

Shankar Mahadevan L 1 Dec 03, 2021
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Converting UGG files from Rode Wireless Go II transmitters (unsompressed recordings) to WAV format

Rode_WirelessGoII_UGG2wav Converting UGG files from Rode Wireless Go II transmitters (uncompressed recordings) to WAV format Story I backuped the .ugg

Ján Mazanec 31 Dec 22, 2022
Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm.

LPC_for_TTS Linear Prediction Coefficients estimation from mel-spectrogram implemented in Python based on Levinson-Durbin algorithm. 基于Levinson-Durbin

Zewang ZHANG 58 Nov 17, 2022
Suyash More 111 Jan 07, 2023
Python audio and music signal processing library

madmom Madmom is an audio signal processing library written in Python with a strong focus on music information retrieval (MIR) tasks. The library is i

Institute of Computational Perception 1k Dec 26, 2022
Enhanced Audio Player for Discord

Discodo is an enhanced audio player for discord

Mary 42 Oct 05, 2022
Audio Retrieval with Natural Language Queries: A Benchmark Study

Audio Retrieval with Natural Language Queries: A Benchmark Study Paper | Project page | Text-to-audio search demo This repository is the implementatio

21 Oct 31, 2022
nicfit 425 Jan 01, 2023
Code for csig audio deepfake detection

FMFCC Audio Deepfake Detection Solution This repo provides an solution for the 多媒体伪造取证大赛. Our solution achieve the 1st in the Audio Deepfake Detection

BokingChen 9 Jun 04, 2022
gentle forced aligner

Gentle Robust yet lenient forced-aligner built on Kaldi. A tool for aligning speech with text. Getting Started There are three ways to install Gentle.

1.2k Dec 30, 2022
A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

A small project where I identify notes and key harmonies in a piece of music and use them further to recreate and generate the same piece of music through Python

5 Oct 07, 2022