Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Overview

Y-Net

Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021

Project page: ipcv.github.io/Acappella/
Paper: Arxiv, Supplementary Material, BMVC (not available yet)

Running a demo / Y-Net Inference

We provide simple functions to load models with pre-trained weights. Steps:

  1. Clone the repo or download y-net>VnBSS>models (models can run as a standalone package)
  2. Load a model:
from VnBSS import y_net_gr # or from models import y_net_gr 
model = y_net_gr()

Examples can be found at y_net>examples. Also you can have a look at tcol.py or example.py, files which computes the demos shown in the website.
Check a demo fully working:
Open In Colab

Citation

@inproceedings{acappella,
    author    = {Juan F. Montesinos and
                 Venkatesh S. Kadandale and
                 Gloria Haro},
    title     = {A cappella: Audio-visual Singing VoiceSeparation},
    booktitle = {British Machine Vision Conference (BMVC)},
    year      = {2021},

}

.
.
.
.
.
.

Training / Using DEV code

Training

The most difficult part is to prepare the dataset as everything is builded upon a very specific format.
To run training:
python run.py -m model_name --workname experiment_name --arxiv_path directory_of_experiments --pretrained_from path_pret_weights
You can inspect the argparse at default.py>argparse_default.
Possible model names are: y_net_g, y_net_gr, y_net_m,y_net_r,u_net,llcp

Testing

  1. Go to manuscript_scripts and replace checkpoint paths by yours in the testing scripts.
  2. Run: bash manuscript_scripts/test_gr_r.sh
  3. Replace the paths of manuscript_scripts/auto_metrics.py by your experiment_directory path.
  4. Run: python manuscript_scripts/auto_metrics.py to visualise results.

It's a complicated framework. HELP!

The best option to run the framework is to debug! Having a runable code helps to see input shapes, dataflow and to run line by line. Download The circle of life demo with the files already processed. It will act like a dataset of 6 samples. You can download it from Google Drive 1.1 Gb.

  1. Unzip the file
  2. run python run.py -m y_net_gr (for example) TODO :D

Everything has been configured to run by default this way.

The model

Each effective model is wrapped by a nn.Module which takes care of computing the STFT, the mask, returning the waveform etcetera... This wrapper can be found at VnBSS>models>y_net.py>YNet. To get rid of this you can simply inherit the class, take minimum layers and keep the core_forward method, which is the inference step without the miscelanea.

Downloading the datasets

To download the Acappella Dataset run the script at preproc>preprocess.py
To download the demos used in the website run preproc>demo_preprocessor.py
Audioset can be downloaded via webapp, streamlit run audioset.py

Computing the demos

Demos shown in the website can be computed:

  • The circle of life demo is obtained by running tcol.py. First turn the flag COMPUTE=True. To visualize the results turn the flag COMPUTE=False and run a streamlit run tcol.py.

FAQs

  1. How to change the optimizer's hyperparameters?
    Go to config>optimizer.json
  2. How to change clip duration, video framerate, STFT parameters or audio samplerate?
    Go to config>__init__.py
  3. How to change the batch size or the amount of epochs?
    Go to config>hyptrs.json
  4. How to dump predictions from the training and test set
    Go to default.py. Modify DUMP_FILES (can be controlled at a subset level). force argument skips the iteration-wise conditions and dumps for every single network prediction.
  5. Is tensorboard enabled?
    Yes, you will find tensorboard records at your_experiment_directory/used_workname/tensorboard
  6. Can I resume an experiment?
    Yes, if you set exactly the same experiment folder and workname, the system will detect it and will resume from there.
  7. I'm trying to resume but found AssertionError If there is an exception before running the model
  8. How to change the amount of layers of U-Net
    U-net is build dynamically given a list of layers per block as shown in models>__init__.py from outer to inner blocks.
  9. How to modify the default network values?
    The json file config>net_cfg.json overwrites any default configuration from the model.
Owner
Juan F. Montesinos
PhD student at Pompeu Fabra university Barcelona
Juan F. Montesinos
A2DP agent for promiscuous/permissive audio sinc.

Promiscuous Bluetooth audio sinc A2DP agent for promiscuous/permissive audio sinc for Linux. Once installed, a Bluetooth client, such as a smart phone

Jasper Aorangi 4 May 27, 2022
In this project we can see how we can generate automatic music using character RNN.

Automatic Music Genaration Table of Contents Project Description Approach towards the problem Limitations Libraries Used Summary Applications Referenc

Pronay Ghosh 2 May 27, 2022
DeepMusic is an easy to use Spotify like app to manage and listen to your favorites musics.

DeepMusic is an easy to use Spotify like app to manage and listen to your favorites musics. Technically, this project is an Android Client and its ent

Labrak Yanis 1 Jul 12, 2021
PyAbsorp is a python module that has the main focus to help estimate the Sound Absorption Coefficient.

This is a package developed to be use to find the Sound Absorption Coefficient through some implemented models, like Biot-Allard, Johnson-Champoux and

Michael Markus Ackermann 8 Oct 19, 2022
Multi-Track Music Generation with the Transfomer and the Johann Sebastian Bach Chorales dataset

MMM: Exploring Conditional Multi-Track Music Generation with the Transformer and the Johann Sebastian Bach Chorales Dataset. Implementation of the pap

102 Dec 08, 2022
LibXtract is a simple, portable, lightweight library of audio feature extraction functions.

LibXtract LibXtract is a simple, portable, lightweight library of audio feature extraction functions. The purpose of the library is to provide a relat

Jamie Bullock 215 Nov 16, 2022
PatrikZero's CS:GO Hearing protection

Program that lowers volume when you die and get flashed in CS:GO. It aims to lower the chance of hearing damage by reducing overall sound exposure. Uses game state integration. Anti-cheat safe.

Patrik Žúdel 224 Dec 04, 2022
The project aims to develop a personal-assistant for Windows & Linux-based systems

The project aims to develop a personal-assistant for Windows & Linux-based systems. Samiksha draws its inspiration from virtual assistants like Cortana for Windows, and Siri for iOS. It has been desi

SHUBHANSHU RAI 1 Jan 16, 2022
This library provides common speech features for ASR including MFCCs and filterbank energies.

python_speech_features This library provides common speech features for ASR including MFCCs and filterbank energies. If you are not sure what MFCCs ar

James Lyons 2.2k Jan 04, 2023
python wrapper for rubberband

pyrubberband A python wrapper for rubberband. For now, this just provides lightweight wrappers for pitch-shifting and time-stretching. All processing

Brian McFee 106 Nov 28, 2022
NovaMusic is a music sharing robot. Users can get music and music lyrics using inline queries.

A music sharing telegram robot using Redis database and Telebot python library using Redis database.

Hesam Norin 7 Oct 21, 2022
MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling

MIDI-DDSP: Detailed Control of Musical Performance via Hierarchical Modeling Demos | Blog Post | Colab Notebook | Paper | MIDI-DDSP is a hierarchical

Magenta 239 Jan 03, 2023
Python library for audio and music analysis

librosa A python package for music and audio analysis. Documentation See https://librosa.org/doc/ for a complete reference manual and introductory tut

librosa 5.6k Jan 06, 2023
Python Audio Analysis Library: Feature Extraction, Classification, Segmentation and Applications

A Python library for audio feature extraction, classification, segmentation and applications This doc contains general info. Click here for the comple

Theodoros Giannakopoulos 5.1k Jan 02, 2023
Speech Algorithms Collections

Speech Algorithms Collections

Ryuk 498 Jan 06, 2023
Mopidy is an extensible music server written in Python

Mopidy Mopidy is an extensible music server written in Python. Mopidy plays music from local disk, Spotify, SoundCloud, Google Play Music, and more. Y

Mopidy 7.6k Jan 05, 2023
Official implementation of A cappella: Audio-visual Singing VoiceSeparation, from BMVC21

Y-Net Official implementation of A cappella: Audio-visual Singing VoiceSeparation, British Machine Vision Conference 2021 Project page: ipcv.github.io

Juan F. Montesinos 12 Oct 22, 2022
Mousai is a simple application that can identify song like Shazam

Mousai is a simple application that can identify song like Shazam. It saves the artist, album, and title of the identified song in a JSON file.

Dave Patrick 662 Jan 07, 2023
Noinoi music is smoothly playing music on voice chat of telegram.

NOINOI MUSIC BOT ✨ Features Music & Video stream support MultiChat support Playlist & Queue support Skip, Pause, Resume, Stop feature Music & Video do

2 Feb 13, 2022
nicfit 425 Jan 01, 2023