A PyTorch implementation of paper "Learning Shared Semantic Space for Speech-to-Text Translation", ACL (Findings) 2021

Overview

Chimera: Learning Shared Semantic Space for Speech-to-Text Translation


This is a Pytorch implementation for the "Chimera" paper Learning Shared Semantic Space for Speech-to-Text Translation https://arxiv.org/abs/2105.03095 (accepted by ACL Findings 2021), which aims to bridge the modality gap by unifying the task of MT (textual Machine Translation) and ST (Speech-to-Text Translation). It has achieved new SOTA performance on all 8 language pairs in MuST-C benchmark, by utilizing an external MT corpus.


This repository is up to now a nightly version, and is bug-prone because of code refactoring. Also it is not fully tested on configurations other than the authors' working environment yet. However, we encourage you to first have a look at the results and model codes to get a general impression of what this project is about.

The code base is forked from FairSeq repository https://github.com/pytorch/fairseq.git (without an actual forking operation) in Septempber 2020. It than lags behind the later updates in FairSeq, and both the codes and checkpoints are not compatible with currect Fairseq version. You will need to modify the model codes for checkpoint configurations if you want to follow the new FairSeq codes.

CONTRIBUTION: You are also more than welcomed to test our code on your machines, and report feedbacks on results, bugs and performance!



Results

Our model (Chimera) achieves new state-of-the-art results on all 8 language pairs on MuST-C:

Direction EN-DE EN-FR EN-RU EN-ES EN-IT EN-RO EN-PT EN-NL
BLEU 26.3 35.6 17.4 30.6 25.0 24.0 30.2 29.2

Chimera novelly learns M distinct "memories" to store specific types of semantic information from both audio and text inputs. Shown below is a visualization of the "Memories" learned by Chimera-16, which is a variant with M = 16. Each learned cluster represents a individual type of information, while each marker is a sentence sample. "+" and "." means text and audio samples, respectively.

We can see more clearly from below (left) that memories learn a well-clustered semantic space, forming a "semantic" alignment (rather than spatial) between audio and text inputs, while ignoring the modality differences.

On the right, we zoom in to focus one cluster in specific, and it can be easily observed that the vectors are well structured as well, with inputs with (probably one of) similar semantic features close in space to each other.

We can even focus on one instance of translation, and see how the memories works. Shown below visualizes the alignment between audio attention and text attention, which tightly gather around the diagonal line. Different colors represents different memories, which attend to different semantic segments of sentence / audio as shown in the figure.



Trained Checkpoints

Our trained checkpoints are available at:

Translation Direction filename External url
English-to-Deutsch Chimera_EN2DE.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2DE.pt
English-to-French Chimera_EN2FR.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2FR.pt
English-to-Russian Chimera_EN2RU.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2RU.pt
English-to-Espanol Chimera_EN2ES.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2ES.pt
English-to-Italiano Chimera_EN2IT.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2IT.pt
English-to-Romanian Chimera_EN2RO.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2RO.pt
English-to-Portuguese Chimera_EN2PT.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2PT.pt
English-to-Dutch Chimera_EN2NL.pt http://sf3-ttcdn-tos.pstatp.com/obj/nlp-opensource/acl2021/chimera/Chimera_EN2NL.pt



Interactive Translation

You can download any one checkpoint mentioned above to local, and translate local audios (only .wav files supported) to another language! To do this, you only need to run the model in an interactive mode. For example, you want to translate from English to Deutsh (DE) with an already trained checkpoint at $CHECKPOINT:

bash run.sh --script chimera/scripts/interactive-en2any-ST.sh \
    --target de --checkpoint $CHECKPOINT

The program will prompt an input file name like this:

2021-04-02 10:00:00 | INFO | fairseq_cli.interactive | Type the input sentence and press return:

After inputing the file name, the program will translate outputs like:

H-0     -1.0      ▁Nach ▁dem ...
D-0     -1.0      Nach dem ...
P-0     -1.0000 -1.0000 ...

NOTE: Do not input a file too large. Normally the model can translate 1~5 normal-length sentences in one time. If the input sentence is too long, the program could crash.

To exit the interactive mode, you only need to input an invalid file name.

To translate to other languages, remember to replace de with their language codes (in lower case):

Language Code
Deutsch (German) DE / de
French FR / fr
Espanol (Spanish) ES / es
Russian RU / ru
Italiano (Italian) IT / it
Romanian RO / ro
Portuguese PT / pt
Dutch (Netherlands) NL / nl



Training a Model on MuST-C

Let's first take a look at training an English-to-Deutsch model as an example.

Data Preparation

  1. Prerequisites and Configuration First check that requirements are met for pip in requirements.txt and for apt in apt-requirements.txt. Some items in the two files may be redundant, but we haven't got time to check and eliminate them.

For configuration, please set the global variables of $WMT_ROOT, $MUSTC_ROOT and SAVE_ROOT These will be where to put the datasets and checkpoints. For example:

export MUSTC_ROOT="speech_data/mustc"
export WMT_ROOT="wmt_data"
export SAVE_ROOT="checkpoints"
export target=de
mkdir -p $MUSTC_ROOT $WMT_ROOT $SAVE_ROOT

NOTE: This simple configuration is a prerequisite for most of the following steps. Here export target=de means the translation direction is English to Deutsch.

  1. Download and uncompress the EN-to-DE MuST-C dataset to $MUSTC_ROOT/en-$target. TIP: to speed up uncompressing a file too large, you can replace tar xzvf with: pigz -dc $TARFILE | tar xvf -

  2. Download the WMT to $WMT_ROOT/orig via:

bash chimera/prepare_data/download-wmt.sh --wmt14 --data-dir $WMT_ROOT --target $target

This may sometimes be too slow as the connection to statmt.org is not steady in some places. In this case you can turn to other faster download sources if possible.

  1. Append MuST-C text data to $WMT_ROOT, and prepare the datasets and produce a joint spm dictionary:
bash chimera/prepare_data/prepare-wmt-en2any.sh \
    --data-dir $WMT_ROOT --wmt14 --original-dev \
    --external mustc --target $target --subword spm
python3 chimera/prepare_data/prep_mustc_data.py \
    --data-root $MUSTC_ROOT --task wave \
    --ignore_fbank80 --joint_spm wmt14-en-$target-spm \
    --languages $target --vocab-type unigram --vocab-size 10000

NOTE: if the first command is executed correctly, you will see one line in the output:

Existing spm dictionary chimera/resources/wmt14-en-de-spm detected. Copying...

If not, the program will still produce one dictionary on the run and reports No existing spm detected. Learning unigram spm on wmt14_en_de/tmp/train.de-en ... This is okay in most cases, with the only risk being a potential mismatch to already trained checkpoints we provided.

Training

To reproduce the results in the last row in Figure 1 in paper, you can directly use the training scripts available as follows.

  1. Pre-training on MT data:
bash run.sh --script chimera/scripts/train-en2any-MT.sh \
    --target $target --dataset wmt14 --max_updates 500000

If you like, you can specify some arguments other than default values. The default setting is --seed 1 --num-gpus 8, which makes the command look like bash run.sh --script chimera/scripts/train-en2$target-MT.sh --seed 1 --num-gpus 8. Value for --num-gpus is recommended to be power of 2, and smaller than 8, e.g. {1, 2, 4, 8}.

  1. Fine-tuning on MuST-C data:
bash run.sh --script chimera/scripts/train-en2any-ST.sh \
    --target $target --dataset wmt14 --max_updates 150000

This script moves the MT-pre-trained model from ${MT_SAVE_DIR}/checkpoint_best.pt to ${ST_SAVE_DIR} as a initialization for ST fine-tuning.

Optionally, if you need to resume a single ST training, you can add argument --resume to the command to avoid overwriting the existing ${ST_SAVE_DIR}/checkpoint_last.pt.

The scripts in step 4 and 5 forks a separate background evaluation process while running. The process monitors $MT_SAVE_ROOT or $ST_SAVE_ROOT and evaluates any new checkpoints. Don't worry, it will be automatically killed after the training finishes, unless the script is Ctrl-C'ed, in which case, you can manually raise the suicide flag by touch chimera/tools/auto-generate-suicide.code to kill the background generation process.

Note that this automatic process only evaluates a single checkpoint (with no averaging), and with a low beam width.

  1. Averaging Checkpoints and Evaluate It

Suppose the best ST checkpoint is at epoch $BEST_EPOCH, and we want to averaging 7 checkpoints around it.

python3 chimera/tools/eval-average-checkpoint.py \
    --ckpt-dir $ST_SAVE_ROOT --number-of-ckpts 7 \
    --center-of-ckpts $BEST_EPOCH

Other Language Pairs

For language pairs English-to-{French, Russian, Espanol}, you only need to replace the export target=de with {fr, ru, es} in step 0, and then run the steps 1~5.

For language pairs English-to-{Italiano, Portuguese, Dutch, Romanian}, the MT data is different, so we need to modify Step 2 and 3. All other Steps remains unchanged.

English to Romanian

For Romanian, we use WMT16 corpora in our paper.

The Step 2 changes to

bash chimera/prepare_data/download-wmt.sh --wmt16 --data-dir $WMT_ROOT --target ro

Step 3 remains unchanged.

English to {Italiano, Portuguese, Dutch}

These language pairs uses OPUS100 as external MT corpora.

The Step 2 changes to

bash chimera/prepare_data/download-opus100.sh --data-dir $WMT_ROOT

Step 3 changes to

bash chimera/prepare_data/prepare-opus100-en2any.sh \
    --data-dir $WMT_ROOT --original-dev \
    --external mustc --target $target --subword spm
python3 chimera/prepare_data/prep_mustc_data.py \
    --data-root $MUSTC_ROOT --task wave \
    --ignore_fbank80 --joint_spm wmt14-en-$target-spm \
    --languages $target --vocab-type unigram --vocab-size 10000

Actually, only the first command of Step 3 changes.

Evaluating a Checkpoint

You can also manually evaluate the performance of any one checkpoint on MuST-C test set. Suppose the path to your checkpoint is $CHECKPOINT

target=de bash chimera/generate/generate-mustc-final.sh $CHECKPOINT



License

Part of codes (especially codes outside chimera/) is adapted from FAIRSEQ code base, therefore carrying the MIT License of its original codes. See NOTICE.md for more details.

Citation

Please cite as:

@article{han2021learning,
  title={Learning Shared Semantic Space for Speech-to-Text Translation},
  author={Han, Chi and Wang, Mingxuan and Ji, Heng and Li, Lei},
  journal={arXiv preprint arXiv:2105.03095},
  year={2021}
}
Owner
Chi Han
CS Graduate student at UIUC.
Chi Han
edge-SR: Super-Resolution For The Masses

edge-SR: Super Resolution For The Masses Citation Pablo Navarrete Michelini, Yunhua Lu and Xingqun Jiang. "edge-SR: Super-Resolution For The Masses",

Pablo 40 Nov 10, 2022
Facebook AI Research Sequence-to-Sequence Toolkit written in Python.

Fairseq(-py) is a sequence modeling toolkit that allows researchers and developers to train custom models for translation, summarization, language mod

13.2k Jul 07, 2021
Simple NLP based project without any use of AI

Simple NLP based project without any use of AI

Shripad Rao 1 Apr 26, 2022
This is a general repo that helps you develop fast/effective NLP classifiers using Huggingface

NLP Classifier Introduction This project trains a bert model on any NLP classifcation model. And uses the model in make predictions on new data using

Abdullah Tarek 3 Mar 11, 2022
Quick insights from Zoom meeting transcripts using Graph + NLP

Transcript Analysis - Graph + NLP This program extracts insights from Zoom Meeting Transcripts (.vtt) using TigerGraph and NLTK. In order to run this

Advit Deepak 7 Sep 17, 2022
The FinQA dataset from paper: FinQA: A Dataset of Numerical Reasoning over Financial Data

Data and code for EMNLP 2021 paper "FinQA: A Dataset of Numerical Reasoning over Financial Data"

Zhiyu Chen 114 Dec 29, 2022
SGMC: Spectral Graph Matrix Completion

SGMC: Spectral Graph Matrix Completion Code for AAAI21 paper "Scalable and Explainable 1-Bit Matrix Completion via Graph Signal Learning". Data Format

Chao Chen 8 Dec 12, 2022
NL. The natural language programming language.

NL A Natural-Language programming language. Built using Codex. A few examples are inside the nl_projects directory. How it works Write any code in pur

2 Jan 17, 2022
ByT5: Towards a token-free future with pre-trained byte-to-byte models

ByT5: Towards a token-free future with pre-trained byte-to-byte models ByT5 is a tokenizer-free extension of the mT5 model. Instead of using a subword

Google Research 409 Jan 06, 2023
Wrapper to display a script output or a text file content on the desktop in sway or other wlroots-based compositors

nwg-wrapper This program is a part of the nwg-shell project. This program is a GTK3-based wrapper to display a script output, or a text file content o

Piotr Miller 94 Dec 27, 2022
Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers

beyond masking Beyond Masking: Demystifying Token-Based Pre-Training for Vision Transformers The code is coming Figure 1: Pipeline of token-based pre-

Yunjie Tian 23 Sep 27, 2022
This is a simple item2vec implementation using gensim for recbole

recbole-item2vec-model This is a simple item2vec implementation using gensim for recbole( https://recbole.io ) Usage When you want to run experiment f

Yusuke Fukasawa 2 Oct 06, 2022
An A-SOUL Text Generator Based on CPM-Distill.

ASOUL-Generator-Backend 本项目为 https://asoul.infedg.xyz/ 的后端。 模型为基于 CPM-Distill 的 transformers 转化版本 CPM-Generate-distill 训练而成。

infinityedge 46 Dec 11, 2022
Paradigm Shift in NLP - "Paradigm Shift in Natural Language Processing".

Paradigm Shift in NLP Welcome to the webpage for "Paradigm Shift in Natural Language Processing". Some resources of the paper are constantly maintaine

Tianxiang Sun 41 Dec 30, 2022
SAINT PyTorch implementation

SAINT-pytorch A Simple pyTorch implementation of "Towards an Appropriate Query, Key, and Value Computation for Knowledge Tracing" based on https://arx

Arshad Shaikh 63 Dec 25, 2022
🤗 Transformers: State-of-the-art Natural Language Processing for Pytorch, TensorFlow, and JAX.

English | 简体中文 | 繁體中文 State-of-the-art Natural Language Processing for Jax, PyTorch and TensorFlow 🤗 Transformers provides thousands of pretrained mo

Hugging Face 77.2k Jan 03, 2023
End-to-End Speech Processing Toolkit

ESPnet: end-to-end speech processing toolkit system/pytorch ver. 1.0.1 1.1.0 1.2.0 1.3.1 1.4.0 1.5.1 1.6.0 1.7.1 1.8.1 ubuntu18/python3.8/pip ubuntu18

ESPnet 5.9k Jan 03, 2023
Pre-training BERT masked language models with custom vocabulary

Pre-training BERT Masked Language Models (MLM) This repository contains the method to pre-train a BERT model using custom vocabulary. It was used to p

Stella Douka 14 Nov 02, 2022
A minimal Conformer ASR implementation adapted from ESPnet.

Conformer ASR A minimal Conformer ASR implementation adapted from ESPnet. Introduction I want to use the pre-trained English ASR model provided by ESP

Niu Zhe 3 Jan 24, 2022
Code to reproduce the results of the paper 'Towards Realistic Few-Shot Relation Extraction' (EMNLP 2021)

Realistic Few-Shot Relation Extraction This repository contains code to reproduce the results in the paper "Towards Realistic Few-Shot Relation Extrac

Bloomberg 8 Nov 09, 2022