Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
Python script to replace BTC adresses in the clipboard with similar looking ones, whose private key can be retrieved by a netcat listener or similar.

BTCStealer Python script to replace BTC adresses in the clipboard with similar looking ones, whose private key can be retrieved by a netcat listener o

Some Person 6 Jun 07, 2022
A free and open-source SMS/Call bombing application

TBOMB V0.1 A free and open-source SMS/Call bombing application NOTE: For Termux To use the bomber type the following commands in Termux: pkg install g

ᴀɴᴋɪᴛ ᴋᴜᴍᴀʀ 2 Dec 07, 2021
Create Discord Accounts Semi-Automatically Without Captcha Solving API Key

Discord-Account-Generator Create Discord Accounts Semi-Automatically without captcha solving api key IMPORTANT: Your chromedriver version should be th

NotSakshyam 11 Mar 21, 2022
Python library for the Stripe API.

Stripe Python Library The Stripe Python library provides convenient access to the Stripe API from applications written in the Python language. It incl

Stripe 1.3k Jan 03, 2023
light wrapper for indeed.com api

Simple wrapper for indeed api. go to indeed.com - register for api publisher token example from indeed import IndeedApi token = 'your token' api =

16 Sep 21, 2022
Please Do Not Throw Sausage Pizza Away - Side Scrolling Up The OSI Stack

Please Do Not Throw Sausage Pizza Away - Side Scrolling Up The OSI Stack

John Capobianco 2 Jan 25, 2022
Trading bot rienforcement with python

Trading_bot_rienforcement System: Ubuntu 16.04 GPU (GeForce GTX 1080 Ti) Instructions: In order to run the code: Make sure to clone the stable baselin

1 Oct 22, 2021
A bot to playing music in telegram vcg

Idzeroid Music|| Idzeroid Music adalah sebuah repository music bot telegram untuk memainkan suara di voice chat group anda. Fyi This repo im using for

idzeroid 1 Oct 26, 2021
A Telegram bot that add a dynamic caption to musics

Music Channel Manager A Telegram bot that add a dynamic caption to musics Deploy to Heroku What is it ? It manage your music channel. With just adding

13 Oct 18, 2022
🚧 finCLI's own News API. No more limited API calls. Unlimited credible and latest information on BTC, Ethereum, Indian and Global Finance.

🚧 finCLI's own News API. No more limited API calls. Unlimited credible and latest information on BTC, Ethereum, Indian and Global Finance.

finCLI 5 Jun 16, 2022
Example-bot-discord - Example bot discord xD

example-python-bot-discord Clone this repository Grab a token on Discord's devel

Amitminer 1 Mar 14, 2022
Robot to convert files to direct links, hosting files on Telegram servers, unlimited and without restrictions

stream-cloud demo : downloader_star_bot Run : Docker : install docker , docker-compose set Environment or edit Config/init.py docker-compose up Heroku

53 Dec 21, 2022
A modular telegram Python bot running on python3 with an sqlalchemy database.

TG_Bot A modular telegram Python bot running on python3 with an sqlalchemy database. Originally a simple group management bot with multiple admin feat

Movindu Bandara 1 Nov 02, 2021
Thread-safe Python RabbitMQ Client & Management library

AMQPStorm Thread-safe Python RabbitMQ Client & Management library. Introduction AMQPStorm is a library designed to be consistent, stable and thread-sa

Erik Olof Gunnar Andersson 167 Nov 20, 2022
I was sick of having to hand my friends my phone, so I gave my Spotify some SMS features!

SMSpotifY Just a little tool so that my friends can text a phone number and add to my spotify queue for parties and such:) Features Roles / Access Con

Sara 2 Jan 17, 2022
Campsite Reservation Cancellation Finder (Yellowstone National Park)

yellowstone-camping yellowstone-camping is a Campsite Reservation Cancellation Finder for Yellowstone National Park. This simple Python application wi

Justin Flannery 7 Aug 05, 2022
An attendance bot that joins google meet automatically according to schedule and marks present in the google meet.

Google-meet-self-attendance-bot An attendance bot which joins google meet automatically according to schedule and marks present in the google meet. I

Sarvesh Wadi 12 Sep 20, 2022
discord.js nuker (50 bans a sec)

js-nuker discord.js nuker (50 bans a sec) I was to lazy to make the scraper in js, but this works too. DISCLAIMER This is tool was made for educationa

4 Sep 11, 2021
API de mi aplicación de Biblioteca

BOOKSTORE API Instalación/Configuración Previo Es una buena idea crear un entorno virtual antes de instalar las dependencias. Puedes hacerlo con el si

Gabriel Morales 1 Jan 09, 2022
Eclipse-grabber - Generate Discord Token Grabbers for both Windows and MacOS

Eclipse Grabber Eclipse Discord Token Grabber What is Eclipse? Eclipse is an ope

Dimitris Kalopisis 117 Dec 23, 2022