Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
PackMyPayload - Emerging Threat of Containerized Malware

This tool takes a file or directory on input and embeds them into an output file acting as an archive/container.

Mariusz Banach 594 Dec 29, 2022
Sends messages to a Discord webhook whenever you make a new commit to your local git repository.

Git-Notif Sends messages to a Discord webhook whenever you make a new commit to your local git repository. Usage Just drop notifier.py into your git h

1 May 29, 2022
Pagination for your discord.py bot using the discord_components library!

Paginator - discord_components This repository is just an example code for how to carry out pagination using the discord_components library for python

Skull Crusher 9 Jan 31, 2022
doi, pubmed, arxiv.org的查询服务API接口,部署于vercel云函数

article-search-service doi, pubmed, arxiv.org的查询服务API接口,部署于vercel云函数 云函数 vercel,国内可能被qiang了。 DOI接口 POST https://article-search-service.vercel.app/api/

HyokaChen 2 Oct 10, 2021
Discord bot that shows valorant your daily store by using the Ingame API

Valorant store checker - Discord Bot Discord bot that shows valorant your daily store by using the Ingame API. written using Python and the Pycord lib

STACIA 226 Jan 02, 2023
Telegram bot/scraper to get the latest NUS vacancy reports.

Telegram bot/scraper to get the latest NUS vacancy reports. Stay ahead of the curve and don't get modrekt.

Chee Hong 1 Jan 08, 2022
A simple tool that lets you know when you are out of Lost Ark's queues

Overview A simple tool that lets you know when you are out of Lost Ark's queues. You can be notified via: Sound: the app will play a sound Discord web

Nelson 3 Feb 15, 2022
An almost dependency-less, synchronous Discord gateway library meant for my personal use

An almost dependency-less, synchronous Discord gateway library meant for my personal use.

h0nda 4 Feb 05, 2022
An Amazon Product Scraper built using scapy module of python

Amazon Product Scraper This is an Amazon Product Scraper built using scapy module of python Features it scrape various things Product Title Product Im

Sudhanshu Jha 1 Dec 13, 2021
Exports saved posts and comments on Reddit to a csv file.

reddit-saved-to-csv Exports saved posts and comments on Reddit to a csv file. Columns: ID, Name, Subreddit, Type, URL, NoSFW ID: Starts from 1 and inc

70 Jan 02, 2023
Module to use some statistics from Spotify API

statify Module to use some statistics from Spotify API To use it you have to import the functions into your own project. You have also to authenticate

Miguel Cózar 2 Jun 02, 2022
A Telegram Bot to Play Audio in Voice Chats With Youtube and Deezer support. Supports Live streaming from youtube Supports Mega Radio Fm Streamings

Bot To Stream Musics on PyTGcalls with Channel Support. A Telegram Bot to Play Audio in Voice Chats With Supports Live streaming from youtube and Mega

Shamil Habeeb 37 Dec 15, 2022
Aio-binance-library - Async library for connecting to the Binance API on Python

aio-binance-library Async library for connecting to the Binance API on Python Th

GRinvest 10 Nov 21, 2022
A course on getting started with the Twitter API v2 for academic research

Getting started with the Twitter API v2 for academic research Welcome to this '101 course' on getting started with academic research using the Twitter

@TwitterDev 426 Jan 04, 2023
Terraform wrapper to manage state across multiple cloud providers(AWS, GCP, and Azure)

Terraform Remote State Manager(tfremote) tf is a python package for managing terraform remote state for: Google(Gcloud), AWS, and Azure. It sets a def

tomarv2 1 Dec 08, 2021
Acid's Utilities is a bot for my Discord server that alerts when I go live, welcomes new users, has some awesome games and so much more!

Acid's Utilities Acid's Utilities is a bot for my Discord server that alerts when I go live, welcomes new users, has some awesome games and so much mo

AcidFilms (Fin Stuart) 3 Nov 19, 2021
Telegram bot to download almost all from Instagram

Instagram Manager Bot The most advanced Instagram Downloader Bot. Please fork this repository don't import code Made with Python3 (C) @subinps Copyrig

SUBIN 300 Dec 30, 2022
This repo provides the source code for "Cross-Domain Adaptive Teacher for Object Detection".

Cross-Domain Adaptive Teacher for Object Detection This is the PyTorch implementation of our paper: Cross-Domain Adaptive Teacher for Object Detection

Meta Research 91 Dec 12, 2022
A discord bot written in python

arch-bot A discord bot written in python prefix: . help: .help Installation Requirements A discord bot token Your user id Python installed. For window

3 Jan 10, 2022
An API wrapper for convertio.co written in Python.

An API wrapper for convertio.co written in Python.

Moonrise 9 Sep 27, 2022