Sie_banxico - A python class for the Economic Information System (SIE) API of Banco de México

Overview

sie_banxico

PyPi Version

A python class for the Economic Information System (SIE) API of Banco de México.

Args: token (str): A query token from Banco de México id_series (list): A list with the economic series id or with the series id range to query. ** A list must be given even though only one serie is consulted. language (str): Language of the obtained information. 'en' (default) for english or 'es' for spanish

Notes: (1) In order to retrive information from the SIE API, a query token is required. The token can be requested here (2) Each economic serie is related to an unique ID. The full series catalogue can be consulted here

Pypi Installation

pip install sie_banxico

SIEBanxico Class Instance

Querying Monetary Aggregates M1 (SF311408) and M2 (SF311418) Data

 >>> from api_banxico import SIEBanxico
 >>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418'], language = 'en')

Class documentation and attributes

>>> api.__doc__
'Returns the full class documentation'
>>> api.token
'1b7da065cf574289a2cb511faeXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX' # This is an example token
>>> api.series
'SF311408,SF311418'

Methods for modify the arguments of the object

set_token: Change the current query token

>>> api.set_token(token = new_token)

set_id_series: Allows to change the series to query

>>> api.append_id_series(id_series = ['SF311412'])
>>> api.series
'SF311408,SF311418,SF311412'

append_id_series: Allows to update the series to query

>>> api.set_id_series(id_series='SF311408-SF311418')
>>> api.series
'SF311408-SF311418'

GET Request Methods

>>> api = SIEBanxico(token = token, id_series = ['SF311408' ,'SF311418']

get_metadata: Allows to consult metadata of the series

    Allows to consult metadata of the series.
    Returns:
        dict: json response format
>>> api.get_metadata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'fechaInicio': '12/01/2000', 'fechaFin': '11/01/2021', 'periodicidad': 'Monthly', 'cifra': 'Stocks', 'unidad': 'Thousands of Pesos', 'versionada': False}]}}

get_lastdata: Returns the most recent published data

Returns the most recent published data for the requested series. Args: pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate. Returns: dict: json response format

>>> api.get_lastdata()
{'bmx': {'series': [{'idSerie': 'SF311418', 'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'datos': [{'fecha': '01/11/2021', 'dato': '11,150,071,721.09'}]}, {'idSerie': 'SF311408', 'titulo': 'Monetary Aggregates M1', 'datos': [{'fecha': '01/11/2021', 'dato': '6,105,266,291.65'}]}]}}

get_timeseries: Allows to consult time series data

    Allows to consult the whole time series data, corresponding to the period defined between the initial date and the final date in the metadata.
    Args:
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.
    Returns:
        dict: json response format
>>> api.get_timeseries(pct_change='PorcAnual')
{'bmx': {'series': [{'idSerie': 'SF311418',
    'titulo': 'Monetary Aggregates M2 = M1 + monetary instruments held by residents',
    'datos': [{'fecha': '01/12/2001', 'dato': '12.89'},
     {'fecha': '01/01/2002', 'dato': '13.99'},
     ...
     {'fecha': '01/11/2021', 'dato': '13.38'}],
     'incrementos': 'PorcAnual'}]}}

get_timeseries_range: Returns the data for the period defined

    Returns the data of the requested series, for the defined period.
    Args:
        init_date (str): The date on which the period of obtained data starts. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the oldest value is returned.
        end_date (str): The date on which the period of obtained data concludes. The date must be sent in the format yyyy-mm-dd. If the given date is out of the metadata time range, the most recent value is returned.
        pct_change (str, optional): None (default) for levels, "PorcObsAnt" for change rate compared to the previous observation, "PorcAnual" for anual change rate, "PorcAcumAnual" for annual acummulated change rate.     
    Returns:
        dict: json response format
>>> api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')
{'bmx': {'series': [{'idSerie': 'SF311408',
    'titulo': 'Monetary Aggregates M1',
    'datos': [{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
     {'fecha': '01/02/2001', 'dato': '517,186,605.97'},
     ...
     {'fecha': '01/04/2004', 'dato': '2,306,755,672.89'}]}]}}

Pandas integration for data manipulation (and further analysis)

All the request methods returns a response in json format that can be used with other Python libraries.

The response for the api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01') is a nested dictionary, so we need to follow a path to extract the specific values for the series and then transform the data into a pandas object; like a Serie or a DataFrame. For example:

data = api.get_timeseries_range(init_date='2000-12-31', end_date='2004-04-01')

# Extract the Monetary Aggregate M1 data
data['bmx']['series'][0]['datos']
[{'fecha': '01/01/2001', 'dato': '524,836,129.99'},
 ...
 {'fecha': '01/04/2004', 'dato': '799,774,807.43'}]

# Transform the data into a pandas DataDrame
import pandas as pd
df = pd.DataFrame(timeseries_range['bmx']['series'][0]['datos'])
df.head()
        fecha            dato
0  01/01/2001  524,836,129.99
1  01/02/2001  517,186,605.97
2  01/03/2001  509,701,873.04
3  01/04/2001  511,952,430.01
4  01/05/2001  514,845,459.96

Another useful pandas function to transform json formats into a dataframe is 'json_normalize':

df = pd.json_normalize(timeseries_range['bmx']['series'], record_path = 'datos', meta = ['idSerie', 'titulo'])
df['titulo'] = df['titulo'].apply(lambda x: x.replace('Monetary Aggregates M2 = M1 + monetary instruments held by residents', 'Monetary Aggregates M2'))
df.head()
        fecha            dato   idSerie                  titulo
0  01/01/2001  524,836,129.99  SF311408  Monetary Aggregates M1
1  01/02/2001  517,186,605.97  SF311408  Monetary Aggregates M1
2  01/03/2001  509,701,873.04  SF311408  Monetary Aggregates M1
3  01/04/2001  511,952,430.01  SF311408  Monetary Aggregates M1
4  01/05/2001  514,845,459.96  SF311408  Monetary Aggregates M1
df.tail()
         fecha              dato   idSerie                  titulo
75  01/12/2003  2,331,594,974.69  SF311418  Monetary Aggregates M2
76  01/01/2004  2,339,289,328.74  SF311418  Monetary Aggregates M2
77  01/02/2004  2,285,732,239.36  SF311418  Monetary Aggregates M2
78  01/03/2004  2,312,217,167.10  SF311418  Monetary Aggregates M2
79  01/04/2004  2,306,755,672.89  SF311418  Monetary Aggregates M2

Licence

The MIT License (MIT)

By

Dillan Aguirre Sedeño ([email protected])

Owner
Dillan
Dillan
pylunasvg - Python bindings for lunasvg

pylunasvg - Python bindings for lunasvg Pylunasvg is a simple wrapper around lunasvg that uses pybind11 to create python bindings. All public API of t

Eren 6 Jan 05, 2023
A stock information collector and parser for Taiwan and US market. Automatically send LINE message if the pre-defined rules are triggered.

agastock 開發動機 就在海運飆漲的2021年7月,差點跪在地上喜迎財富自由的當下,EPS超高好消息不斷的長榮竟然套在202元一去不回,有圖有真相(哭) 忽然體會到追高殺低不是辦法,魯蛇我得靠邏輯分析也能出頭天,經過三個月無數個不出門的周末,產出簡單的爬蟲和分析工具。 上過金融研訓院的量化交易

Gavin Lee 12 Nov 16, 2022
This is a DCA crypto trading bot built for Binance written in Python

This is a DCA crypto trading bot built for Binance written in Python. It works by allowing you to DCA at an interval of your choosing and reports back on your average buy price as well as a chart con

Andrei 55 Oct 17, 2022
Deepak Clouds Torrent is a multipurpose Telegram Bot writen in Python for mirroring files on the Internet to our beloved Google Drive.

Deepak Clouds Torrent is a multipurpose Telegram Bot writen in Python for mirroring files on the Internet to our beloved Google Drive.

Deepak Clouds 37 Oct 28, 2022
Shedding a new skin on Dis-Snek's commands.

Molter - WIP Shedding a new skin on Dis-Snek's commands. Currently, its goals are to make message commands more similar to discord.py's message comman

Astrea 7 May 01, 2022
Unarchive Bot for Telegram

Telegram UnArchiver Bot UnArchiveBot: 🇬🇧 Bot that allows you to extract supported archive formats in telegram. 🇹🇷 Desteklenen arşiv biçimleri tele

Hüzünlü Artemis [HuzunluArtemis] 25 May 07, 2022
AWS Serverless Application Model (SAM) is an open-source framework for building serverless applications

AWS Serverless Application Model (AWS SAM) The AWS Serverless Application Model (SAM) is an open-source framework for building serverless applications

Amazon Web Services 8.9k Dec 31, 2022
Robot Swerve Test Public With Python

Robot-Swerve-Test-Public The codebase for our swerve drivetrain prototype robot.

1 Jan 09, 2022
Disctopia-c2 - Windows Backdoor that is controlled through Discord

Disctopia Disctopia Command and Control What is Disctopia? Disctopia is an open

Dimitris Kalopisis 218 Dec 26, 2022
An Telegram Bot By @AsmSafone To Stream Videos in Telegram Voice Chat. This is Also The Source Code of The Bot Which is Being Used In @SafoTheBot Group! ❤️

Telegram Video Player Bot (Beta) An Telegram Bot By @AsmSafone To Stream Videos in Telegram Voice Chat. Special Features Supports Live Streaming From

SAF ONE 206 Jan 03, 2023
A Discord bot for osu!

This is the mostly-complete repo for the owo Discord osu! bot which you can invite here. As you look through this repo, please keep in mind that all o

Stevy 43 Dec 28, 2022
Requests based multi-threaded script for increasing followers on Spotify

Proxyless Spotify Follow Bot Requests based multi-threaded script for increasing followers on Spotify. Click here to report bugs. Usage Download ZIP h

397 Jan 03, 2023
A minimal caching proxy to GitHub's REST & GraphQL APIs

github-proxy A caching forward proxy to GitHub's REST and GraphQL APIs. GitHub-Proxy is a thin, highly extensible, highly configurable python framewor

Babylon Health 26 Oct 05, 2022
Companion "receiver" to matrix-appservice-webhooks for [matrix].

Matrix Webhook Receiver Companion "receiver" to matrix-appservice-webhooks for [matrix]. The purpose of this app is to listen for generic webhook mess

Kim Brose 13 Sep 29, 2022
A corona statistics and information telegram bot.

A corona statistics and information telegram bot.

Fayas Noushad 15 Oct 21, 2022
A Bot to Track Kernel Upstreams from kernel.org and Post it on Telegram Channel

Channel Kernel Tracker is the channel where the bot will be sending the updates in. Introduction This is a Telegram Bot to Track Kernel Upstreams kern

Kartikeya Hegde 3 Oct 05, 2021
Simple integration between FastAPI and cloud authentication services (AWS Cognito, Auth0, Firebase Authentication).

FastAPI Cloud Auth fastapi-cloudauth standardizes and simplifies the integration between FastAPI and cloud authentication services (AWS Cognito, Auth0

tokusumi 255 Jan 07, 2023
Automated endpoint management for Amazon Aurora Global Database

This sample code can be used to manage Aurora global database endpoints. After failover the global database writer endpoints swap from one region to the other. This solution automates creation and ma

AWS Samples 13 Dec 08, 2022
Script que realiza a identificação de todos os logins e senhas dos wifis conectados em uma máquina e envia os dados para um e-mail especificado.

getWIFIConnection Script que realiza a identificação de todos os logins e senhas dos wifis conectados em uma máquina e envia os dados para um e-mail e

Vinícius Azevedo 3 Nov 27, 2022
Multipurpose Discord bot hosted on replit.com

RockyBot Multipurpose Discord bot hosted on https://replit.com/ Installing Dependencies Install poetry through pip: pip install poetry Then simply exe

Rocky 2 May 18, 2022