Ladder network is a deep learning algorithm that combines supervised and unsupervised learning

Overview

This repository contains source code for the experiments in a paper titled Semi-Supervised Learning with Ladder Networks by A Rasmus, H Valpola, M Honkala, M Berglund, and T Raiko.

Required libraries

Install Theano, Blocks Stable 0.2, Fuel Stable 0.2

Refer to the Blocks installation instructions for details but use tag v0.2 instead. Something along:

pip install git+git://github.com/mila-udem/[email protected]
pip install git+git://github.com/mila-udem/[email protected]

Fuel comes with Blocks, but you need to download and convert the datasets. Refer to the Fuel documentation. One might need to rename the converted files.

fuel-download mnist
fuel-convert mnist --dtype float32
fuel-download cifar10
fuel-convert cifar10
Alternatively, one can use the environment.yml file that is provided in this repo to create an conda environment.
  1. First install anaconda from https://www.continuum.io/downloads. Then,
  2. conda env create -f environment.yml
  3. source activate ladder
  4. The environment should be good to go!

Models in the paper

The following commands train the models with seed 1. The reported numbers in the paper are averages over several random seeds. These commands use all the training samples for training (--unlabeled-samples 60000) and none are used for validation. This results in a lot of NaNs being printed during the trainining, since the validation statistics are not available. If you want to observe the validation error and costs during the training, use --unlabeled-samples 50000.

MNIST all labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,1,0.01,0.01,0.01,0.01,0.01 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_full
# Bottom
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,2 --labeled-samples 60000 --unlabeled-samples 60000 --seed 1 -- mnist_all_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 60000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_all_baseline
MNIST 100 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 5000,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_bottom
# Gamma
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0.5 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 100 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_100_baseline
MNIST 1000 labels
# Full
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --f-local-noise-std 0.2 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_full
# Bottom-only
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_bottom
# Gamma model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,10 --labeled-samples 1000 --unlabeled-samples 60000 --seed 1 -- mnist_1000_gamma
# Supervised baseline
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec 0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0 --labeled-samples 1000 --unlabeled-samples 60000 --f-local-noise-std 0.5 --seed 1 -- mnist_1000_baseline
MNIST 50 labels
# Full model
run.py train --encoder-layers 1000-500-250-250-250-10 --decoder-spec gauss --denoising-cost-x 2000,20,0.1,0.1,0.1,0.1,0.1 --labeled-samples 50 --unlabeled-samples 60000 --seed 1 -- mnist_50_full
MNIST convolutional models
# Conv-FC
run.py train --encoder-layers convv:1000:26:1:1-convv:500:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:250:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec gauss --denoising-cost-x 1000,10,0.1,0.1,0.1,0.1,0.1,0.1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_fc
# Conv-Small, Gamma
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-gauss --denoising-cost-x 0,0,0,0,0,0,0,0,0,1 --labeled-samples 100 --unlabeled-samples 60000 --seed 1  -- mnist_100_conv_gamma
# Conv-Small, supervised baseline. Overfits easily, so keep training short.
run.py train --encoder-layers convf:32:5:1:1-maxpool:2:2-convv:64:3:1:1-convf:64:3:1:1-maxpool:2:2-convv:128:3:1:1-convv:10:1:1:1-globalmeanpool:6:6-fc:10 --decoder-spec 0-0-0-0-0-0-0-0-0-0 --denoising-cost-x 0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --f-local-noise-std 0.45 --labeled-samples 100 --unlabeled-samples 60000 --seed 1 -- mnist_100_conv_baseline
CIFAR models
# Conv-Large, Gamma
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-gauss --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,4.0 --num-epochs 70 --lrate-decay 0.86 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_gamma
# Conv-Large, supervised baseline. Overfits easily, so keep training short.
./run.py train --encoder-layers convv:96:3:1:1-convf:96:3:1:1-convf:96:3:1:1-maxpool:2:2-convv:192:3:1:1-convf:192:3:1:1-convv:192:3:1:1-maxpool:2:2-convv:192:3:1:1-convv:192:1:1:1-convv:10:1:1:1-globalmeanpool:0 --decoder-spec 0-0-0-0-0-0-0-0-0-0-0-0-0 --dataset cifar10 --act leakyrelu --denoising-cost-x 0,0,0,0,0,0,0,0,0,0,0,0,0 --num-epochs 20 --lrate-decay 0.5 --seed 1 --whiten-zca 3072 --contrast-norm 55 --top-c False --labeled-samples 4000 --unlabeled-samples 50000 -- cifar_4k_baseline
Evaluating models with testset

After training a model, you can infer the results on a test set by performing the evaluate command. An example use after training a model:

./run.py evaluate results/mnist_all_bottom0
Owner
Curious AI
Deep good. Unsupervised better.
Curious AI
Discord based board game, Sneks and Ladders

sneks-and-ladders Discord based board game, Sneks and Ladders intro This is the code-base for the Discord based game, Sneks and Ladders, as used for s

Yohei Nakajima 3 Nov 04, 2022
PyChess - a chess client for Linux/Windows

PyChess - a free chess client for Linux/Windows The mission of PyChess is to create a free, pleasant, PyGObject based chess game for the Linux desktop

559 Dec 28, 2022
Chess - A python gui application

Chess Python version 3.10 or greater is required to play. Note This is a gui application, and as such will not run inside WSL.

Jonxslays 1 Dec 16, 2021
A Frogger game in Python with pygame

CrockiCrocki A personal project of a simple "game" in Python to learn Pygame and Python. Requires: pygame: In Linux: pip3 install pygame In MacOS: pip

Jorge Abreu 1 Nov 07, 2021
Multiple hacks that breaks the game

Blooket-Hack All of the cheats are based on a game mode.

glizzz_y 484 Feb 25, 2022
Multiplayer 2D shooter made with Pygame

PyTanks This project started as a one day project with two goals: Create a simulated environment with as much logic as possible written in Numpy, to o

Felix Chippendale 1 Nov 07, 2021
A small fun project to simulate Conway's Game of Life, created in Python.

A small fun project to simulate Conway's Game of Life, created in Python. Conway's Game of Life simulates a grid of cells, where the state of each cell consists of whether the cell is alive or dead.

Harrison Verrios 1 Jun 19, 2022
Open source Brawl Stars server emulator for version 29 of the game!

Welcome to Classic-Brawl v29 Remake 👋 Open source Brawl Stars server emulator for version 29 of the game! (Remake) What's working ? Battles Trophies

CrossFire 4 Jan 19, 2022
PLVRA is a TUI (Terminal User Interface) implementation of wordle / termo in portuguese, written in Python

PLVRA is a TUI (Terminal User Interface) implementation of wordle / termo in portuguese, written in Python

Enzo Shiraishi 1 Feb 11, 2022
Snake - Code for "Deep Snake for Real-Time Instance Segmentation" CVPR 2020 oral

Good news! Snake algorithms exhibit state-of-the-art performances on COCO dataset: DANCE Deep Snake for Real-Time Instance Segmentation Deep Snake for

ZJU3DV 1.1k Dec 26, 2022
A small module for creating a card deck, used for making card games

card-deck This module can be used to create small card games such as BlackJack etc.. To initialize the deck, use: Deck() To shuffle the deck, use: Dec

4 Dec 31, 2021
This is a basic virtual quiz game using opencv-python

Basic Virtual-Quiz-Game This is a basic structure of a virtual quiz game using opencv-python. As the camera window opens up we can see the questions a

2 Dec 11, 2021
An easy to use game engine/framework for python.

A game engine powered by python and panda3d.

Petter Amland 1.6k Jan 05, 2023
Script to remap minecraft 1.12 java classes.

Remapper Script to remap minecraft 1.12 java classes. Usage You must have Python installed. You must have the script, mappings, and files / folders in

8 Dec 02, 2022
For the Exapunk minigame, ПАСЬЯНС

Exapunks Automation This repository solves Exapunk's Solitaire minigame, ПАСЬЯНС. This repository is useable, but only with specific display condition

Will C 5 Jul 29, 2022
Python Interactive Mini Games

Python Interactive Mini Games Mini projects from Coursera's An Introduction to I

Ashish Choudhary 1 Jan 16, 2022
Flappy bird using Pygames

flappy-bird Esse é um jogo que eu fiz utilizando a biblioteca de jogos do Python

Leandro Henrique 2 Jan 05, 2022
This is a 2D Link to the Past-esque game made using Python 3.2.5 and pygame 1.9.2

Queen-s-Demise Queen's Demise This is a 2D Link to the Past-esque game made using Python 3.2.5 and pygame 1.9.2 I made this for a game development cla

Zoey 1 Dec 15, 2021
This is a Python solver for the game Wordle, which recently received its PT-BR version

PT_BR_Wordle_Solver Este é um solver feito em Python do jogo Wordle, que recebeu sua versão PT-BR recentemente. Onde jogar Os sites para se jogar mais

Vinicius Jameli 1 Jan 24, 2022
An exploration of a fantasy world, to autobattle your way to ruling the demesne.

Not Quite Paradise 2 (no relation to NQP, I just like the name enough to want to keep it.) Badges! Current position: Quality of last commit: Who dunni

9 Mar 12, 2022