Interactivity Lab: Household Pulse Explorable

Overview

Interactivity Lab: Household Pulse Explorable

Goal: Build an interactive application that incorporates fundamental Streamlit components to offer a curated yet open-ended look at a dataset.

The Household Pulse Survey is a weekly survey run by the US Census Bureau that measures how the coronavirus pandemic is impacting households across the country from a social and economic perspective. It’s a valuable and extensive source of data to gain insight on individuals and families, and one that we will only begin to touch on in today’s lab.

To help a user explore this data interactively, we will build a Streamlit application that displays the results of one Household Pulse Survey, which ran from from September 29 to October 11, 2021.

Part 0: Setup (before class)

Before coming to class, please download this repository, set up your virtual environment of choice, and install the dependencies using pip install -r requirements.txt. Now start the application by typing streamlit run streamlit_app.py. You should see the template code running in the browser!

Part 1: Warmup and generating plots

All your code for this lab should go in the streamlit_app.py script. In this file, you’ll see helper functions (some of which you will fill in) and a section labeled “MAIN CODE.” Most of your code will go in this latter section, which is at the top level of the script and will run from top to bottom to render your Streamlit application.

  1. Let’s get started by printing some data to the browser. Implement the load_data function, which should read the CSV file pulse39.csv and return it. Then, in the main code, use Streamlit’s builtin dataframe component to print the first 10 rows of df. You should see a scrollable table like this:

Screenshot of the dataframe being visualized in Streamlit

To get an idea of the distribution of demographics in this dataset, let’s create some summary plots using Altair. (The dataset includes several demographic features, which are listed in the Appendix at the bottom of this document. You may wish to visualize more of these features if you have time.)

  1. Create Altair bar charts to visualize the distributions of race and education levels in the data. You may want to refer to the Altair documentation as you build your charts. Remember that to render an Altair chart in Streamlit, you must call st.altair_chart(chart) on the Altair chart object.

    Tip: To get the counts of a categorical variable to visualize, you can use the Altair count aggregation, like so:

    chart = alt.Chart(df)...encode(
        x='count()',
        y='
         
          '
         
    )
  2. Make your charts interactive! This is super easy with Altair. Just add .interactive() to the end of your Altair function call, and you should be able to pan and zoom around your chart. You should also create some tooltips to show the numerical data values. To do this, add the tooltip parameter to your encoding, like so:

    chart = alt.Chart(df)...encode(
        ...,
        tooltip=['
         
          '
         ]
    ).interactive()

Examine the summary charts and see if you can get a sense of the distributions in the dataset. Take a minute to discuss with your group: Who is well-represented in this data, and who isn’t? Why might this be the case?

Part 2: Interactive Slicing Tool

Up until now, we’ve only used basic interactivity from Altair. But what if we want to allow the user to choose which data gets plotted? Let’s now build a Streamlit interface that lets the user select a group of interest based on some demographic variables (which we’ll call a “slice”), and compare distributions of outcome variables for people within the slice against people outside of it.

We'll allow the user to slice the data based on the following four demographic variables (don't worry, the code will be similar for most of these):

  • gender (includes transgender and an option for other gender identities)
  • race
  • education (highest education level completed)
  • age (integers ranging from 19 to 89)

Once they've sliced the data, we will visualize a set of vaccination-related outcome variables for people inside and outside the slice:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

If you're interested, the dataset contains a few other sets of outcomes, which you can browse in the Appendix. But for now, let's start slicing!

  1. Decide what controls are best for the user to manipulate each demographic variable. The controls that are supported in Streamlit are listed here.

  2. Build the controls in the “Custom slicing” section of the page. If you run into trouble, refer to the Streamlit docs or ask the TAs! Tip: Take note of how the values are returned from each Streamlit control. You will need this information for the subsequent steps.

  3. Fill in the get_slice_membership function, which builds a Boolean series indicating whether each data point is part of the slice or not. An example of how to do this using gender as a multiselect has already been filled in for you.

  4. Now, use the values returned from each control to create a slice by calling the get_slice_membership function.

  5. Test that your slicing tool is working by writing a line to the page that prints the count and percentage of the data that is contained in the slice. Manipulate some of the controls and check that the size of each slice matches your expectations.

  6. Create visualizations comparing the three outcome variables within the slice to the variables outside the slice. We recommend using an st.metric component to show the vaccination rate and the vaccine intention fields, and a bar chart to show the distribution of reasons for not getting the vaccine.

    Tip: To display the vaccine hesitancy reasons, the dataframe will require some transformation before passing it to Altair. We’ve provided a utility function to help you do this, which you can use like so:

    # Creates a dataframe with columns 'reason' (string) and 'agree' (boolean)
    vaccine_reasons_inslice = make_long_reason_dataframe(df[slice_labels], 'why_no_vaccine_')
    
    chart = alt.Chart(vaccine_reasons_inslice, title='In Slice').mark_bar().encode(
        x='sum(agree)',
        y='reason:O',
    ).interactive()
    # ...

Here is an example of what your slicing tool could look like (here we are using st.columns to make a 2-column layout):

Screenshot of an example showing a comparison of reasons why people are opting not to get the vaccine

With your group, try slicing the data a few different ways. Discuss whether you find any subgroups that have different outcomes than the rest of the population, and see if you can hypothesize why this might be!

Part 3 (bonus): Interactive Random Sampling

If you have time, you can implement another simple interactive function that users will appreciate. While large data exploration tools are powerful ways to see overall trends, the individual stories of people in the dataset can sometimes get lost. Let’s implement a tool to randomly sample from the dataset and portray information relevant to the topic you investigated above.

  1. In the “Person sampling” section, build a button to retrieve a random person.

  2. When the button is pressed, write code to retrieve a random row from the dataset. You can use the pandas.DataFrame.sample function for this.

  3. Display the information from this datapoint in a human-readable way. For example, one possible English description of a datapoint could look like this:

    This person is a 65-year-old Straight, Married Female of White race (non-hispanic). They have not received the vaccine, and their intention to not get the vaccine is 3.0. Their reasons for not getting the vaccine include: Concerned about possible side effects, Don't know if it will protect me, Don't believe I need it, Don't think COVID-19 is a big threat

As in Part 2, feel free to communicate this information in the way that feels most appropriate to you.

Discuss with your group: What do you notice about individual stories generated this way? What are the strengths and drawbacks of sampling and browsing individual datapoints compared to looking at summary visualizations?

Appendix: Dataset Features

Demographic Variables

  • age and age_group (age_group bins the ages into four categories)
  • gender (includes transgender and an option for other gender identities)
  • sexual_orientation
  • marital_status
  • race and hispanic (the US Census defines ‘Hispanic’ as being independent of self-identified race, which is why it is coded as a separate variable)
  • education (highest education level completed)
  • num_children_hhld (the number of children living in the person’s household)
  • had_covid (boolean)

Outcome Variables

Reasons for vaccine hesitancy

To study vaccination rates, people’s intentions to get or not get the vaccine, and their reasons for this, the following columns are available:

  • received_vaccine (boolean)
  • vaccine_intention (scale from 1 - 5, where 1 is most likely to get the vaccine and 5 is most likely NOT to get the vaccine)
  • why_no_vaccine_ (thirteen boolean columns indicating whether the person does not want to get the vaccine for each reason. Note that multiple reasons can be selected)

Economic and food insecurity

The dataset includes columns that may be useful to understand people’s levels of financial and food insecurity:

  • expenses_difficulty (scale from 1 - 4, 1 is least difficulty, 4 is most difficulty paying expenses)
  • housing_difficulty (scale from 1 - 4, same as above for paying next rent or mortgage payment)
  • food_difficulty (scale from 1 - 4, same as above for having enough food)
  • why_not_enough_food_ (four boolean columns indicating whether the person experienced each reason for not having enough food. Note that multiple reasons can be selected)

Mental health

The dataset also includes some columns for understanding people’s recent mental health status:

  • freq_anxiety, freq_worry, freq_little_interest, freq_depressed (scale from 1 - 4 where 1 indicates not at all, 4 indicates nearly every day in the past two weeks)
  • mh_prescription_meds (boolean whether the person has taken prescription medication for mental health)
  • mh_services (boolean whether the person has received mental health services in the past month)
  • mh_notget (boolean whether the person sought mental health services but did not receive them)
Apilytics for Python - Easy API analytics for Python backends

apilytics-python Installation Sign up and get your API key from https://apilytics.io - we offer a completely free trial with no credit card required!

Apilytics 6 Sep 29, 2022
MatroSka Mod Compiler for ts4scripts

MMC Current Version: 0.2 MatroSka Mod Compiler for .ts4script files Requirements Have Python 3.7 installed and set as default. Running from Source pip

MatroSka 1 Dec 13, 2021
Med to csv - A simple way to parse MedAssociate output file in tidy data

MedAssociates to CSV file A simple way to parse MedAssociate output file in tidy

Jean-Emmanuel Longueville 5 Sep 09, 2022
Opensource Desktop application for kenobi.

Kenobi-Server WIP Opensource desktop application for Kenobi. Download the apple watch app to get started. What is this repo? It's repo for the opensou

Aayush 9 Oct 08, 2022
Openfe - Alchemical free energy calculations for the masses

The Open Free Energy library Alchemical free energy calculations for the masses.

33 Dec 22, 2022
JD扫码获取Cookie 本地版

JD扫码获取Cookie 本地版 请无视手机上的提示升级京东版本的提示! 下载链接 https://github.com/Zy143L/jd_cookie/releases 使用Python实现 代码很烂 没有做任何异常捕捉 但是能用 请不要将获取到的Cookie发送给任何陌生人 如果打开闪退 请使

Zy143L 420 Dec 11, 2022
A simple service that allows you to run commands on the server using text

Server Text A simple flask service that allows you to run commands on the server/computer over sms. Think of it as a shell where you run commands over

MT Devs 49 Nov 09, 2021
A simple bot that will help you in your learning and make it more fun.

hyperskill-SimpleChattyBot-python A simple bot that will help you in your learning and make it more fun. Syntax bot.py Stages Stage #1: Zuhura Bot we

1 Nov 09, 2021
Play tic-tac-toe in PowerPoint

The presentation has around 6,000 slides representing every possible game state (and some impossible ones, since I didn't check for wins or ties). You play by clicking on the squares, which are hyper

Jesse Li 3 Dec 18, 2021
API for SpeechAnalytics integration with FreePBX/Asterisk

freepbx_speechanalytics_api API for SpeechAnalytics integration with FreePBX/Asterisk Скопировать файл settings.py.sample в settings.py и отредактиров

Iqtek, LLC 3 Nov 03, 2022
GNU/Linux'u yeni kurulumu bitirmiş olarak açtığınızda sizi karşılayacak bir uygulama.

Hoş Geldiniz GNU/Linux'u yeni kurulumu bitirmiş olarak açtığınızda sizi karşılayacak bir uygulama.

Alperen İsa 96 Oct 30, 2022
Headless chatbot that detects spam and posts links to it to chatrooms for quick deletion.

SmokeDetector Headless chatbot that detects spam and posts it to chatrooms. Uses ChatExchange, takes questions from the Stack Exchange realtime tab, a

Charcoal 421 Dec 21, 2022
One destination for all the developer's learning resources.

DevResources One destination for all the developer's learning resources. Find all of your learning resources under one roof and add your own. Live ✨ Y

Gaurav Sharma 33 Oct 21, 2022
a really simple bot that send you memes from reddit to whatsapp

a really simple bot that send you memes from reddit to whatsapp want to use use it? install the dependencies with pip3 install -r requirements.txt the

pai 10 Nov 28, 2021
This is friendlist update tools & old idz clon & follower idz clon etc

This is friendlist update tools & old idz clon & follower idz clon etc

MAHADI HASAN AFRIDI 1 Jan 15, 2022
kurwa deska ADB

kurwa-deska-ADB kurwa-deska Запуск Linux -- python3 kurwa_deska.py Termux -- python3 kurwa_deska.py Встановлення cd kurwa_deska ADB і зразу запуск pyt

1 Jan 21, 2022
🦋 hundun is a python library for the exploration of chaos.

hundun hundun is a python library for the exploration of chaos. Please note that this library is in beta phase. Example Import the package's equation

kosh 7 Nov 07, 2022
Python requirements.txt Guesser

Python-Requirements-Guesser ⚠️ This is alpha quality software. Work in progress Attempt to guess requirements.txt modules versions based on Git histor

Jerome 9 May 24, 2022
📦 A Human's Ultimate Guide to setup.py.

📦 setup.py (for humans) This repo exists to provide an example setup.py file, that can be used to bootstrap your next Python project. It includes som

Navdeep Gill 5k Jan 04, 2023
OntoSeer is a tool to help users build better quality ontologies

Ontoseer This document provides documentation for the first version of OntoSeer.OntoSeer is a tool that monitors the ontology development process andp

Knowledgeable Computing and Reasoning Lab 9 Aug 15, 2022