PyTorch framework A simple and complete framework for PyTorch, providing a variety of data loading and simple task solutions that are easy to extend and migrate

Overview

PyTorch framework

一个简单且完整的PyTorch的框架,提供了各种数据的加载以及简单任务的解决方案,易于扩展和迁移。

1.该框架提供了各种数据类型的加载(.wav .mat .jpg .csv .npy)方案。

2.该框架提供了简单分类任务和回归任务的解决方案,以及几个基础模型:CNN、RNN、Attention (ResNet、LSTM、Transformer-encoder)

3.该框架是一个简单且完整的框架,只保留了必要的部分并有详细的注释,方便阅读和理解。

并且解耦了各个模块,易于扩展和迁移。迁移到其他任务上只需要更改dataloader和model部分 (还有损失函数)。

用法:

训练和验证

python main.py --dataset_path ./data/audio/wav2vec/ --model_path  wav2vec --feature wav2vec --feature_dim 768 --task regression --model lstm

python main.py --dataset_path ./data/vision/AU/ --model_path  AU --feature AU --feature_dim 34 --task regression --model lstm

python main.py --dataset_path ./data/vision/vggface/ --model_path  vggface --feature vggface --feature_dim 128 --task regression --model lstm

python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet

测试

python test.py --dataset_path ./data/audio/wav2vec/ --model_path  ./model/wav2vec_regression_1.pth --feature wav2vec --feature_dim 768 --task regression --model lstm

多卡训练

CUDA_VISIBLE_DEVICES=0,1 python main.py --dataset_path ./data/vision/image/ --model_path  image --feature image  --task classification --model resnet --parallel

CUDA_VISIBLE_DEVICE 和 parallel 搭配使用,单用 parallel 会默认使用所有卡。






如果有任何问题,欢迎联系我([email protected])

Owner
Cong Cai
Cong Cai
A Closer Look at Structured Pruning for Neural Network Compression

A Closer Look at Structured Pruning for Neural Network Compression Code used to reproduce experiments in https://arxiv.org/abs/1810.04622. To prune, w

Bayesian and Neural Systems Group 140 Dec 05, 2022
higher is a pytorch library allowing users to obtain higher order gradients over losses spanning training loops rather than individual training steps.

higher is a library providing support for higher-order optimization, e.g. through unrolled first-order optimization loops, of "meta" aspects of these

Facebook Research 1.5k Jan 03, 2023
Bunch of optimizer implementations in PyTorch

Bunch of optimizer implementations in PyTorch

Hyeongchan Kim 76 Jan 03, 2023
A PyTorch implementation of EfficientNet

EfficientNet PyTorch Quickstart Install with pip install efficientnet_pytorch and load a pretrained EfficientNet with: from efficientnet_pytorch impor

Luke Melas-Kyriazi 7.2k Jan 06, 2023
A Pytorch Implementation for Compact Bilinear Pooling.

CompactBilinearPooling-Pytorch A Pytorch Implementation for Compact Bilinear Pooling. Adapted from tensorflow_compact_bilinear_pooling Prerequisites I

169 Dec 23, 2022
S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

S3-plugin is a high performance PyTorch dataset library to efficiently access datasets stored in S3 buckets.

Amazon Web Services 138 Jan 03, 2023
A pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch.

Compact Bilinear Pooling for PyTorch. This repository has a pure Python implementation of Compact Bilinear Pooling and Count Sketch for PyTorch. This

Grégoire Payen de La Garanderie 234 Dec 07, 2022
A tutorial on "Bayesian Compression for Deep Learning" published at NIPS (2017).

Code release for "Bayesian Compression for Deep Learning" In "Bayesian Compression for Deep Learning" we adopt a Bayesian view for the compression of

Karen Ullrich 190 Dec 30, 2022
PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation.

PyNIF3D is an open-source PyTorch-based library for research on neural implicit functions (NIF)-based 3D geometry representation. It aims to accelerate research by providing a modular design that all

Preferred Networks, Inc. 96 Nov 28, 2022
PyTorch Extension Library of Optimized Scatter Operations

PyTorch Scatter Documentation This package consists of a small extension library of highly optimized sparse update (scatter and segment) operations fo

Matthias Fey 1.2k Jan 07, 2023
Differentiable ODE solvers with full GPU support and O(1)-memory backpropagation.

PyTorch Implementation of Differentiable ODE Solvers This library provides ordinary differential equation (ODE) solvers implemented in PyTorch. Backpr

Ricky Chen 4.4k Jan 04, 2023
Over9000 optimizer

Optimizers and tests Every result is avg of 20 runs. Dataset LR Schedule Imagenette size 128, 5 epoch Imagewoof size 128, 5 epoch Adam - baseline OneC

Mikhail Grankin 405 Nov 27, 2022
Learning Sparse Neural Networks through L0 regularization

Example implementation of the L0 regularization method described at Learning Sparse Neural Networks through L0 regularization, Christos Louizos, Max W

AMLAB 202 Nov 10, 2022
Fast Discounted Cumulative Sums in PyTorch

TODO: update this README! Fast Discounted Cumulative Sums in PyTorch This repository implements an efficient parallel algorithm for the computation of

Daniel Povey 7 Feb 17, 2022
Tutorial for surrogate gradient learning in spiking neural networks

SpyTorch A tutorial on surrogate gradient learning in spiking neural networks Version: 0.4 This repository contains tutorial files to get you started

Friedemann Zenke 203 Nov 28, 2022
PyTorch Extension Library of Optimized Autograd Sparse Matrix Operations

PyTorch Sparse This package consists of a small extension library of optimized sparse matrix operations with autograd support. This package currently

Matthias Fey 757 Jan 04, 2023
A few Windows specific scripts for PyTorch

It is a repo that contains scripts that makes using PyTorch on Windows easier. Easy Installation Update: Starting from 0.4.0, you can go to the offici

408 Dec 15, 2022
Training PyTorch models with differential privacy

Opacus is a library that enables training PyTorch models with differential privacy. It supports training with minimal code changes required on the cli

1.3k Dec 29, 2022
Implementation of LambdaNetworks, a new approach to image recognition that reaches SOTA with less compute

Lambda Networks - Pytorch Implementation of λ Networks, a new approach to image recognition that reaches SOTA on ImageNet. The new method utilizes λ l

Phil Wang 1.5k Jan 07, 2023
PyTorch extensions for fast R&D prototyping and Kaggle farming

Pytorch-toolbelt A pytorch-toolbelt is a Python library with a set of bells and whistles for PyTorch for fast R&D prototyping and Kaggle farming: What

Eugene Khvedchenya 1.3k Jan 05, 2023