Python Project on Pro Data Analysis Track

Overview

Udacity-BikeShare-Project:

Python Project on Pro Data Analysis Track

Basic Data Exploration with pandas on Bikeshare Data

Basic Udacity project using pandas library in Python for their bikeshare data exploration.

Project Overview:

This project focuses on pandas library usage and simple statistics methods to perform a rudimentary analysis on the bikeshare data from three major U.S. cities - Chicago, Washington, and New York City - to display information such as most popular days or most common stations.

Running the program:

You can input 'python bikeshare.py' on your terminal to run this program. I use Anaconda's command prompt on a Windows 10 machine.

Program Details:

The program takes user input for the city (e.g. Chicago), month for which the user wants to view data (e.g. January; also includes an 'all' option), and day for which the user wants to view data (e.g. Monday; also includes an 'all' option).

Upon receiving the user input, it goes ahead and asks the user if they want to view the raw data (5 rows of data initially) or not. Following the input received, the program prints the following details:

Most popular month

Most popular day

Most popular hour

Most popular start station

Most popular end station

Most popular combination of start and end stations

Total trip duration

Average trip duration

Types of users by number

Types of users by gender (if available)

users birth dates (if available)

Finally, the user is prompted with the choice of restarting the program or not.

Requirements:

Language: Python 3.6 or above

Libraries: pandas, numpy, time

Project Data:

chicago.csv - Stored in the data folder, the chicago.csv file is the dataset containing all bikeshare information for the city of Chicago provided by Udacity.

new_york_city.csv - Dataset containing all bikeshare information for the city of New York provided by Udacity.

washington.csv - Dataset containing all bikeshare information for the city of Washington provided by Udacity. Note: This does not include the 'Gender' or 'Birth Year' data.

Built with:

IDE : PyCharm

Python 3.9 - The language used to develop this.

pandas - One of the libraries used for this.

numpy - One of the libraries used for this.

time - One of the libraries used for this.

Author:

Belal Mohammed Ali

NANO Degree Program from FWD Initiative:

Date of Project Submission:

--Date created: 10/10/2021

--Date last modified: 3/19/2021

Owner
Belal Mohammed
Belal Mohammed
Techdegree Data Analysis Project 2

Basketball Team Stats Tool In this project you will be writing a program that reads from the "constants" data (PLAYERS and TEAMS) in constants.py. Thi

2 Oct 23, 2021
Python Library for learning (Structure and Parameter) and inference (Statistical and Causal) in Bayesian Networks.

pgmpy pgmpy is a python library for working with Probabilistic Graphical Models. Documentation and list of algorithms supported is at our official sit

pgmpy 2.2k Dec 25, 2022
Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production

Numerics Numerical Analysis toolkit centred around PDEs, for demonstration and understanding purposes not production Use procedure: Initialise a new i

George Whittle 1 Nov 13, 2021
TheMachineScraper 🐱‍👤 is an Information Grabber built for Machine Analysis

TheMachineScraper 🐱‍👤 is a tool made purely for analysing machine data for any reason.

doop 5 Dec 01, 2022
Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions.

About Unsub is a collection analysis tool that assists libraries in analyzing their journal subscriptions. The tool provides rich data and a summary g

9 Nov 16, 2022
Lale is a Python library for semi-automated data science.

Lale is a Python library for semi-automated data science. Lale makes it easy to automatically select algorithms and tune hyperparameters of pipelines that are compatible with scikit-learn, in a type-

International Business Machines 293 Dec 29, 2022
Udacity-api-reporting-pipeline - Udacity api reporting pipeline

udacity-api-reporting-pipeline In this exercise, you'll use portions of each of

Fabio Barbazza 1 Feb 15, 2022
Demonstrate a Dataflow pipeline that saves data from an API into BigQuery table

Overview dataflow-mvp provides a basic example pipeline that pulls data from an API and writes it to a BigQuery table using GCP's Dataflow (i.e., Apac

Chris Carbonell 1 Dec 03, 2021
Spectral Analysis in Python

SPECTRUM : Spectral Analysis in Python contributions: Please join https://github.com/cokelaer/spectrum contributors: https://github.com/cokelaer/spect

Thomas Cokelaer 280 Dec 16, 2022
Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles

Correlation-Study-Climate-Change-EV-Adoption Data Analytics: Modeling and Studying data relating to climate change and adoption of electric vehicles I

Jonathan Feng 1 Jan 03, 2022
Includes all files needed to satisfy hw02 requirements

HW 02 Data Sets Mean Scale Score for Asian and Hispanic Students, Grades 3 - 8 This dataset provides insights into the New York City education system

7 Oct 28, 2021
MDAnalysis is a Python library to analyze molecular dynamics simulations.

MDAnalysis Repository README [*] MDAnalysis is a Python library for the analysis of computer simulations of many-body systems at the molecular scale,

MDAnalysis 933 Dec 28, 2022
A simplified prototype for an as-built tracking database with API

Asbuilt_Trax A simplified prototype for an as-built tracking database with API The purpose of this project is to: Model a database that tracks constru

Ryan Pemberton 1 Jan 31, 2022
Universal data analysis tools for atmospheric sciences

U_analysis Universal data analysis tools for atmospheric sciences Script written in python 3. This file defines multiple functions that can be used fo

Luis Ackermann 1 Oct 10, 2021
CPSPEC is an astrophysical data reduction software for timing

CPSPEC manual Introduction CPSPEC is an astrophysical data reduction software for timing. Various timing properties, such as power spectra and cross s

Tenyo Kawamura 1 Oct 20, 2021
apricot implements submodular optimization for the purpose of selecting subsets of massive data sets to train machine learning models quickly.

Please consider citing the manuscript if you use apricot in your academic work! You can find more thorough documentation here. apricot implements subm

Jacob Schreiber 457 Dec 20, 2022
Data collection, enhancement, and metrics calculation.

l3_data_collection Data collection, enhancement, and metrics calculation. Summary Repository containing code for QuantDAO's JDT data collection task.

Ruiwyn 3 Dec 23, 2022
Airflow ETL With EKS EFS Sagemaker

Airflow ETL With EKS EFS & Sagemaker (en desarrollo) Diagrama de la solución Imp

1 Feb 14, 2022
Generate lookml for views from dbt models

dbt2looker Use dbt2looker to generate Looker view files automatically from dbt models. Features Column descriptions synced to looker Dimension for eac

lightdash 126 Dec 28, 2022
Data exploration done quick.

Pandas Tab Implementation of Stata's tabulate command in Pandas for extremely easy to type one-way and two-way tabulations. Support: Python 3.7 and 3.

W.D. 20 Aug 27, 2022